Elais-N1 field: International LOFAR 1" Imaging Strategy and Results

Dr. Haoyang Ye | 15th EVN Symposium | Cork, Ireland

Universiteit Leiden The Netherlands

Content

- 1. LoFAR and International LoFAR
- 2. Imaging with International LoFAR
- 3. Elais-N1 field: 1" imaging results
- 4. 1" imaging strategy with International LoFAR
- 5. Challenges and next steps

6"

/ "

LOw Frequency ARray

LOw Frequency ARray

10-240 MHz

LOw Frequency ARray

1.1 LOFAR

Low Band Antenna **LBA*:** 10-80 MHz

High Band Antenna HBA*: 110-240 MHz

Images Correlator Spectra in Groningen (NL) **Time series**

*Currently, LOFAR can use only one type of antenna at the same time. Soon upgraded to simultaneously observe with both types of antennas.

1.1 LOFAR

Low Band Antenna **LBA*:** 10-80 MHz

High Band Antenna HBA*: 110-240 MHz

Correlator Spectra in Groningen (NL) **Time series**

*Currently, LOFAR can use only one type of antenna at the same time. Soon upgraded to simultaneously observe with both types of antennas.

haoyang.ye@cantab.net

HBA 144 MHz

1.2 International LOFAR (ILT)

1.2 International LOFAR (ILT)

- 120-168MHz wide-area survey
- Aim to cover whole northern sky at 6" resolution
- Sensitivity: ~100 μ Jy/beam
- DR 1: 400 deg² (Shimwell et al, 2022)
- DR 2: 5700 deg^2 (Shimwell et al, 2019)
- >90% LoTSS observations with international stations

LOFAR Two-metre Sky Survey (LoTSS)

- Image resolution: 6" resolution
- Sensitivity: ~100 µJy/beam >90% LoTSS observations with international stations

LOFAR Deep Fields

- Fields: Elais-N1, Lockman Hole, and Boötes • Image resolution: 6" resolution • Sensitivity: 19, 25 and 36 μ Jy/beam

LOFAR Two-metre Sky Survey (LoTSS)

1 arcmin 6 arcsec 1 arcsec **0.3 arcsec**

without International Stations

with International Stations

haoyang.ye@cantab.net

A selected source in the Lockmanhole | Credit: Sweijen & Oei

12

6":

Standard imaging products of LoTSS survey DR1, DR2.

- "Mature" pipeline 🔽
- Batch Processing 🔽

0.3":

1 "

The highest resolution achieved so far at 144MHz with ILT by Sweijen F., et al. (2022).

For an 8-hour wide field LoTSS observation

6'' 12k Core Hours

haoyang.ye@cantab.net

1" ? Core Hours

0.3'' 210k-250k Core Hours

Can we have a 1" LoTSS Survey in the future?

Can we have a 1" LoTSS Survey in the future?

Can we have 1" deep fields?

3.1 Why Elais-N1 field

Elais-N1: Observation Parameters				
Observation IDs	L686960			
Pointing centres	16h11m00s+54d57m0			
Integration time	8 h			
Observation date	2018 Nov 26			
Correlations	XX, XY, YX, YY			
Frequency range	120-168 MHz			
Bandwidth	48 MHz			
Stations	51 total			
	(13 International,14 remote,			

haoyang.ye@cantab.net

Field choice:

Elais-N1 field is one of the most well-studied fields. Apart from radio, it has also been observed at multiple wavelengths.

Aim: Make a science-quality 1"-2" image, and see how long it takes.

3.1 Why Elais-N1 field

Elais-N1: Observation Parameters				
Observation IDs	L686960			
Pointing centres	16h11m00s+54d57m00s			
Integration time	8 h			
Observation date	2018 Nov 26			
Correlations	XX, XY, YX, YY			
Frequency range	120-168 MHz			
Bandwidth	48 MHz			
Stations	51 total			
	(13 International,14 remote, 24 core)			

uv-coverage for this Elais-N1 field observation. The maximum baseline is 1550 km (or 662 k λ). The two colours show the symmetric uv points obtained from the conjugate visibilities.

Haoyang Ye, Wendy Williams, Frits Sweijen, Reinout van Weeren and Jurjen de Jong

Universiteit Leiden Sterrewacht Leider

FoV: 2.5 x 2.5 deg^2 Image size: 25000 * 25000 pix^2 Beam size: 1.2" x 2"

Haoyang Ye, Wendy Williams, Frits Sweijen, Reinout van Weeren and Jurjen de Jong

Sterrewacht Leider

Haoyang Ye, Wendy Williams, Frits Sweijen, Reinout van Weeren and Jurjen de Jong

Selected sources on

Left: 6" image Centre: 1" image Right*: 0.3" image

Only 25% of the data is used

Sterrewacht Leider

LoTSS: Continumm Image Products				
Observation	Beam Size (")	RMS (µJy/beam)	Use international baselines?	
LoTSS survey	6	71	No	
LoTSS Deep Fields	6	20-30	No	
LoTSS - Lockman Hole (Sweijen et al. ,2022)	0.3	25	Yes	
LoTSS - Elais-N1 (This work)	1.2	60	Yes	

3.3. Computational cost: 1" Imaging on Elais-N1

(~12,000 CH) LoTSS pipeline

An 8-hour LoTSS observation takes at least 5-6 weeks to make the 1" image.

LOFAR-VLBI

(~10,000 CH) Subtraction

(~10,000 CH)

1" Imaging

(~7,000 CH)

DD calibration

(~10,000 CH)

All together ~ 9 weeks @ 32 cores (only use a single node)

We have larger cores :P

If we don't count our trial-and-fail time: 5-6 weeks.

3.3. Computational cost: 1" Imaging with ILT

For an 8-hour wide field LoTSS observation

6" 12k Core Hours

49k Core Hours= 12k + 37k

haoyang.ye@cantab.net

0.3'' 210k-250k Core Hours

3. Elais-N1 field: 1" imaging results

Can we have a 1" **LoTSS Survey in the future?**

Can we have 1" deep fields?

3. Elais-N1 field: 1" imaging results

Can we have a 1" **LoTSS Survey in the future?**

Can we have 1" deep fields?

Possible : D

haoyang.ye@cantab.net

26

- Challenges:
 - **1. Direction Dependent Calibration** Ionosphere blurring for Low Frequency Observation -> 1) select *enough* calibrators in the field 2) select *good* calibrators in the field

2. Computational challenge for producing big images (e.g. 25000^2)

4. 1" imaging strategy with International LoFAR Challenge 1: 1) select *enough* calibrators in the field

haoyang.ye@cantab.net

Image size chosen within 1*FWHM for maximum sensitivity

4. 1" imaging strategy with International LoFAR Direction-independent self-calibration: Challenge 1: 1) select enough calibrators in the field Cycle 0, 2 and 4 (left to right)

Direction-independent self-calibration: Cycle 0, 2 and 4 (left to right)

haoyang.ye@cantab.net

The self-calibration performs well, so it would work well for the nearby region during directionindependent self-calibration.

4. 1" imaging strategy with International LoFAR Cycle 0, 4 and 8 (left to right) Challenge 1: 2) select good calibrators in the field

Direction-independent self-calibration: Cycle 0, 4 and 8 (left to right)

haoyang.ye@cantab.net

The self-calibration doesn't perform well, so it would not be a good calibrator for directionindependent self-cal.

Reason: not enough signal on long baselines, as the source become resolved in higher resolution.

Direction-independent self-calibration: Cycle 0, 2 and 4 (left to right)

haoyang.ye@cantab.net

The self-calibration performs well, so it would work well for the nearby region during directionindependent self-calibration.

What if we select *not so good* calibrators in the field

haoyang.ye@cantab.net

What if we select *not so good* calibrators in the field

haoyang.ye@cantab.net

What if we select *not so good* calibrators in the field

haoyang.ye@cantab.net

Don't...

4. 1" imaging strategy with International LoFAR Challenge 1: select calibrators in the field

haoyang.ye@cantab.net

* different technique compared to Sweijen F., et al. (2022)

5. Next steps

- Test other fields on the existing 1" imaging automated workflow - Lockman Hole: Sweijen et al. 2022
 - ELAIS-N1: H. Ye / J. de Jong (Leiden)
 - **Boötes**: E. Escott (Durham) - NEP – M. Bondi (INAF)
- Experiment with 0.3" imaging with WSCLEAN - R. van Weeren, J. de Jong (Leiden), ASTRON, **SURF**

Morabito, L., et al. 2022, A&A, 658, A1 Shimwell T., et al. 2019, A&A, 622, A1 Shimwell T., et al. 2022, A&A, 659, A1 Sweijen F., et al. 2022, Nature Astronomy, 6, 350

Thank you!

haoyang.ye@cantab.net

Our image:

Dr. Haoyang Ye Leiden, NL

Astrometry: dRA = RA_1" - RA_6"(radio); dDEC = DEC_1" - DEC_6"

Astrometry: dRA = RA_1" - RA_optical; dDEC = DEC_1" - DEC_optical

haoyang.ye@cantab.net

The median astrometric offsets are within 1.2", the pixel size of our image, while the pixel size of the optical images are 0.2".

Flux: Total_flux_1" / Total_flux_6"

haoyang.ye@cantab.net

Cross-matched 1-1 compact sources

Flux: Total_flux_1" / Total_flux_6"

