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Outline

•  Why Build a Celestial Frame at X/Ka-band. (8.4/32 GHz) ?

•  X/Ka Frame has been a part of ICRF-3 since 2019 Jan 01.

•  X/Ka ground station network geometry has limited accuracy especially in Declination
In 2014 we added Malargüe, Argentina 34-meter. 

This was a big step forward as it enabled full sky coverage.
In 2020 we added JAXA’s new 54-meter at Misasa, Japan.

• X/Ka results

• Comparison to ICRF3-S/X and recent S/X celestial frame
The importance of accounting for full RA-Dec correlations

• Next steps to improve data and analysis.
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Why build a Celestial Reference Frame at X/Ka? 
•  Spacecraft are allocated three frequencies: S (2.3 GHz),   X (8,4 GHz),    Ka (32 GHz)

•  S-band usefulness is decreasing rapidly
Very few new missions at S-band
RFI at S-band is degrading the band (Wi-Fi etc.)
Source structure worse at low frequencies (cf. Hunt et al, de Witt et al, IVS-GM, 2022)

•  X-band is now the “workhorse” frequency, 
but nearing structure floor at ~30 µas?  (LeBail, EVGA, 2019).

•  Ka-band advantages:
More bandwidth: 500 MHz allocation, spacecraft tones can spread up to 200 MHz
Higher telemetry rates
Solar plasmas effect reduced as 1/ frequency squared

This allows tracking much closer to the Sun e.g. Parker Solar Probe
Core shift reduced as 1/ frequency
X/Ka dual-band calibrates ionosphere (solves K-band ion calibration issue)
More compact structure than S/X (Hunt et al IVS-GM 2022; 

de Witt et al, IVS-GM, 2022 and this meeting)
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Current Status of X/Ka
Celestial Frame
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Current Status of X/Ka Celestial Frame
•   680 sources

Ka-band 32 GHz, 500 MHz spanned bandwidth
X-band  8.4 GHz, 400 MHz spanned bandwidth

•   Observed 2005 July until 2022 May
Started at 56 Mbps      in 2005

at 2048 Mbps since 2014

•  249 single baseline sessions 
7 baselines, mostly 3 baselines
using pairs of 34-meters
all baselines > earth radius 

•   112, 425 observations,
40 psec wRMS scatter

• XKa-2022c
Median s (acosd) = 46 µas
Median s (d)          = 65 µas

ICRF3-SX
Median s (acosd) = 56 µas
Median s (d)          = 78 µas
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Ka (32 GHz, 9mm) Right Ascension sigmas (precision) 

• Strengths:   - Uniform spatial density
- less structure than S/X (3.6cm)
- needed only 0.12 million observations

vs. K-band 1.8 million
vs. SX’s 16.5 million!

• Weaknesses:
- Poor near Galactic center due to inter-stellar media scattering
- South weak due to limited time on ESA’s Argentina station
- Limited Argentina-California data makes vulnerable to d zonals
- Limited Argentina-Australia weakens d  from -45 to -60 deg
- Misasa, Japan just started

680 sources
Median s (acosd) = 46 µas

Galactic
plane

Ecliptic
plane
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XKa:   di - dj correlations vs. arclength

Inter-source correlations almost all in range of 0 to 0.5 
while any individual correlation is small, there is a cumulative effect.
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Ka-band combined NASA/ESA/JAXA Deep Space 
Network

Maps credit: Google maps

ESA’s Argentina 35-meter antenna adds  3 baselines to DSN’s 2 baselines
• Full sky coverage by accessing south polar cap
• near perpendicular mid-latitude baselines: CA to Aust./Argentina

JAXA’s Misasa, 54-meter antenna adds another 3 baselines

Argentina ~15%

ESA Argentina to NASA-California under-observed by order of magnitude!
JAXA Misasa. Japan just started in Nov 2020
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XKa vs. SX-ICRF3:  RA  Zonal errors

Zonal Errors Dacosd ~ sin (2d):   Quadrupole 2,0  = 142 +- 1 µas     
Suspect North-South tradeoffs of troposphere and Celestial Frame
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XKa vs. SX-ICRF3:  Dec Zonal

Zonal Errors Dd ~ cosd:   Dipole Z = -74 +- 45 µas
Dipole Z precision is 3 times weaker than X or Y dipole terms. Need stronger geometry
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ICRF3-X/Ka vs. ICRF3-S/X (Charlot et al, 2020)
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Spherical Harmonic Differences for 546 common sources (~10% outliers removed)

Diagonal covariance for XKa RA, Dec
Parameter_name value         sigma         scaled_s norm norm+scale
R1 rotation_X =   32.9     +- 7.1     µas   8.6    
R2 rotation_Y =   -0.3     +- 7.1     µas   8.6    
R3 rotation_Z =   -6.5     +- 4.6     µas   5.5    

Dipole-1              =    2.8     +- 6.6     µas   8.1    
Dipole-2              =   36.9     +- 6.6     µas   8.0    
Dipole-3              = -331.4     +- 6.6     µas   8.0     -50.2s, -41.4s

Quad 20 Mag (Da ~sin2d)=  196.0     +- 6.4     µas   7.8      30.6s,     25.1s
Quad 20 Elc (Dd  ~sin2d)=   78.1     +- 8.8     µas  10.7

Full covariance (include inter-source correlations)
Parameter_name value          sigma        scaled_s norm  norm+scale
R1 rotation_X =   12.0     +- 6.4     µas   9.2    
R2 rotation_Y =    1.3     +- 6.6     µas   9.5    
R3 rotation_Z =   -6.6     +- 4.4     µas   6.3    

Dipole-1              =    9.8     +- 12.3     µas  17.7    
Dipole-2              =   39.0     +- 11.9     µas  17.1    
Dipole-3              =  -87.8     +- 43.5     µas  62.5     -2.0s,      -1.4s

Quad 20 Mag (Da ~sin2d)=  196.5     +- 15.5     µas  22.3     12.7s,      8.8s
Quad 20 Elc (Dd  ~sin2d)=   -9.4     +- 21.8     µas  31.4  
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Comparisons of zonal differences vs. Time.
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Spherical Harmonic Differences for common sources (~10% outliers removed)

Z-Dipole:     Dd ~ cos d
Diagonal covariance                      Full a-d covariance

XKa-ICRF3 vs. SX-ICRF3                   -331 µas (-41.4s) -88 µas  (-1.4s)
XKa 2022c  vs. SX-ICRF3                   -156 µas    (-22.2s) -74 µas  (-1.6s)

XKa 2022c  vs. SX-220703 scale.  s -151 µas    (-22.4s) -58 µas  (-1.3s)
XKa 2022c  vs. SX-220703 formal s -152 µas    (-22.0s) -15 µas  (-0.3s)

! Proper accounting of geometric correlations 
accounts for weakly determined but insignificant Z-Dipole

Quadrupole 2,0 magnetic term: Dacosd ~ sin 2d
Diagonal covariance                     Full a-d covariance

XKa-ICRF3 vs. SX-ICRF3                  196 µas    (25.1s) 197 µas   (8.8s)
XKa 2022c  vs. SX-ICRF3                  177 µas   (38.4s) 142 µas (7.7s)

XKa 2022c  vs. SX-220703_scale s    169 µas   (25.6s) 127 µas (7.0s)
XKa 2022c  vs. SX-220703 formal s 174  µas  (27.6s) 94 µas (4.2s)
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Next Steps for X/Ka Frame: Better Data

65

• More JAXA Misasa 54-meter North-South baseline data

•  ESA Malargüe upgrading front end:
300 MHz            ! 500 MHz    1st use 2022 May 16: 30 psec wRMS
Data rate increased from 1.792 Gbps to 2.048 Gbps.

Fully cooled: zenith Tsys 80K ! 40K          in about a year

• DSN Ka-band pointing thermal deformations calibrated in realtime?
• DSN has potential for 4 Gbps: 2 Gbps RCP + 2 Gbps LCP

(not funded at this time)

• VLBA: Potential for 8-36 GHz broadband System (Kooi et al, 2022)
This would add 45 baselines and solve the sparse Ka network issue.
Increase analog bandwidth from 0.5 GHz to 4 GHz
! almost factor of three in sensitivity, 
! potential for order of magnitude improvement in delay precision
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Malargüe front end upgrade 300 -> 500 MHz

First light: 2022 May 16, Argentina to California 8500 km baseline

8500 km baseline

Ka

trops 30min
clock ~24h
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Receiver System On-Sky Testing Receiver unit on roof of JPL 
Telecommunications building

LNA

Hybrid

Feed

4K Cold Fingers

G10 Thermal Break

40K Stage

Coax In/Out

LNA

JPL broadband 8-36 GHz for VLBA (Kooi et al, 2022)

Supports X, Ku, K, Ka-bands each band starts at 1 GHz, later 4 GHz
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VLBA Installation preparations
for 8-36 GHz broadband at OVRO

7.83o

View from 
above

View from 
below

(Kooi et al, 2022)
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Delay c2 by source: 
evidence of some small structure for ~10% of sources
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Source structure can
bias position along jet 
direction.

This explains most
outliers > 5s for 
X vs. K-bands.

No Ka imaging yet,
but working on Ka-band
system for VLBA.

0112-017     (de Witt et al, 2022)

Frequency Dependent positions
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JAXA’s Misasa 54m: online November, 2020
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Misasa, Japan to Goldstone, CA: 2020 Nov 30
12 psec wRMS !! Thus, source structure < 12 psec
(Jacobs et al, EVGA, 2021)

8200 km baseline, cold winter session, wet trop. frozen out

8200 km baseline
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Next Steps for X/Ka Frame: Better Analysis
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• Character of errors is undergoing change
from uncorrelated white noise 
to noise that has both spatial and temporal correlations.

In 2005 at start of X/Ka, SNR was major issue:
low data rate: 56 Mbps now 2048 Mbps
poor Ka-band pointing (half of scans lost, now 5-10% loss)

As uncorrelated noise shrinks, correlated noise becomes more dominant.

• Revive Kolmogorov Spectrum correlated troposphere noise
(Treuhaft & Lanyi, Radio Sci, 1987)

Demonstrated to help Celestial frame at 10-20% level
(Romero-Wolf & Jacobs Journees 2011, IVS-GM 2012)

• Implement correlated clock noise:
Work underway. . .
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Temporal Correlations on Delay
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Antenna Separation r

Troposphere
Effective height
h ~ 1-2 km 

Wind Speed
v ~ 10 m/s

Frozen flow model 
maps spatial 
correlations into 
temporal correlations 
with a scale T=r/v.

Romero-Wolf & Jacobs, Journees 2011

Treuhaft & Lanyi model (Radio Science, 1987)
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Summary: JPL 2022c X/Ka Celestial Frame
•  X/Ka part of ICRF-3 since 2019 Jan 01 (Charlot, Jacobs et al, A&A, 2020)

•  X/Ka 2022c:   680 sources,   0.12 million observations,
•  Precision:  Median   s(a cosd) = 46,   s(d) 65 µas.    Comparable to SX and K-band CRFs.

Precision has been limited by lack of data on North-South baselines
2013 added Goldstone, CA  to Malargüe,  Argentina
2020 added Misasa, Japan   to Tidbinbilla, Australia
2022 upgraded Malargüe front end 300-> 500 MHz, 2023 fully cooled 80K-> 40K

•  Accuracy: limited by systematic zonal errors vs. Declination due to network and troposphere
Z-Dipole:     Dd ~ cos d

Diagonal covariance                      Full a-d covariance
XKa-ICRF3 vs. SX-ICRF                    -331 µas (-41.4s) -88 µas  (-1.4s)
XKa 2022c  vs. SX-ICRF3                  -156 µas    (-22.2s) -74 µas  (-1.6s)
XKa 2022c  vs. SX-220703 scale.  s -151 µas    (-22.4s) -58 µas  (-1.3s)
XKa 2022c  vs. SX-220703 formal s -152 µas    (-22.0s) -15 µas  (-0.3s)

! Proper accounting of geometric correlations accounts for weakly determined but insignificant Z-Dipole

Quadrupole 2,0 magnetic term: Dacosd ~ sin 2d
Diagonal covariance                     Full a-d covariance

XKa-ICRF3 vs. SX-ICRF3                  196 µas    (25.1s) 197 µas   (8.8s)
XKa 2022c  vs. SX-ICRF3                  177 µas   (38.4s) 142 µas (7.7s)
XKa 2022c  vs. SX-220703_scale s    169 µas   (25.6s) 127 µas (7.0s)
XKa 2022c  vs. SX-220703 formal s 174  µas  (27.6s) 94 µas (4.2s)

! Proper accounting of geometry helps, but still leaves significant quadrupole 2,0

•  Source structure: issue for about 10% of sources
Broadband X!Ka (8-36 GHz) for VLBA to allow Ka-band astrometry & imaging
Prototyped tested. Fringe test at VLBA-OVRO 2nd half 2022.


