

NICOLAUS COPERNICUS UNIVERSITY IN TORUŃ

Faculty of Physics, Astronomy and Informatics

Cloudlet evolution in IRAS 20126+4104 during last 15 years and its periodic variability

Artis Aberfelds¹, Anna Bartkiewicz², Marian Szymczak², Jānis Šteinbergs¹, Ivars Shmeld¹, Gabriele Surcis³, Agnieszka Kobak², Michal Durjasz²

1. Engineering Research Institute "Ventspils International Radio Astronomy Center", Ventspils University of Applied Sciences

2. Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University

3. INAF -- Osservatorio Astronomico di Cagliari

Email: artis.aberfelds@venta.lv

R. Cesaroni et al. 2013

15th EVN Symposium and Users' Meeting 14 July 2022.

IRAS 20126+4104 (G78.122+3.633)

- B0.5 spectral class star with ~7- 12 M_{\odot} surrounded by Keplerian disk (Cesaroni et al. 1997)
- Water maser jet and proper motion studies (Moscadelli et al. 2011a)
- Trigonometric parallaxes with mean value of 0.645±0.030 mas implying distance of 1.6 (+0.3 -0.12) kpc (Reid et al. 2019)

• Rotation energy is less than magnetic (Surcis et al. 2014)

IRAS 20126+4104 EVN observations, with full array including:

Jodrell Bank, Effelsberg, Medicina, Onsala, Torun, Westerbork, Yebes, Sardinia, Hartebeesthoek, Irbene and Tianma.

Five epochs of IRAS 20126+4104 with EVN over 15 years

Cloudlet 1

Cloudlet 2 (group 1)


```
Cloudlet 7 (group 1)
```



```
Cloudlet 5 (group 2)
```


200 150 100 50 0 -50 -100 -150 -200Δ RA (mas)

Cloudlet 6 (group 2)

Monitoring using Irbene RT-32 and RT-16

Torun monitoring from 2009 -2013 (Szymczak et al. 2018)

Tentative indications of periodic variability

Note! Lower period significance, when look to full time series

100

Active variability period

Relative flux to -6.1 km/s component

Conclusions

- High variability doesn't relate to significant maser morphology changes
- Individual cloudlets can exist for 15 + years
- Individual cloudlet morphology can change significantly
- Cloudlets tracing infalling material on disk (group 2) are more variable in sort and long-time scales
- Cloudlets in disk jet interface (group 1) are less variable, but their morphology are more complex
- Possible periodic variability is tentatively detected, and for now we are favoring idea of increasing accretion activity.

Thank you for attention!

 Supported by the European Regional Development Fund project No. 1.1.1.5/18/I/009 "Support to the Ventspils University of Applied Sciences in preparation of international cooperation projects for research and Innovation".

INVESTING IN YOUR FUTURE