

Double Synchrotron Self-Absorption Spectrum of the Blazar 3C 454.3 and Its Magnetic Field Strength

Hyeon-Woo Jeong and Sang-Sung Lee

hwjeong@kasi.re.kr

Astronomy and Space Science, University of Science and Technology, Daejeon, 34113, Republic of Korea Korea Astronomy and Space Science Institute, Daejeon 34055, Korea

Abstract

The blazar 3C 454.3 is known for its strong outburst across the whole electromagnetic spectrum. Multi-wavelength radio observations enable us to study the spectral variability of relativistic radio jets in the source. In our work, we use multi-wavelength radio observations from 3 GHz to 340 GHz. From the spectral analysis using the multi-wavelength data we found two synchrotron self-absorption(SSA) features in the spectra for the compact variable emission regions in the source. One peak of the SSA spectral features is found at a frequency range of 3-37 GHz (LSS), and the other at 56-124 GHz (HSS). By using the derived SSA turnover frequency and peak flux density, we estimated B-field strength (B_{SSA}) for the SSA regions in the relativistic jets. The estimated B-field strength of the HSS and LSS features are >0.2mG and >7mG, respectively. The LSS B-field strength is stronger than the estimated B-field strength (B_{EQ} = 2-4mG) under the equipartition condition before the 2014 June γ -ray flare. We found the LSS region is close to the quasi-stationary (C) component ~0.6 mas away from the VLBI core at 43GHz. And we found the component C is considered as recollimation shock based on the analysis of jet size and polarization.

References	Fuhrmann et al. 2016, A&A, 596, A45	Jorstad et al. 2017, ApJ, 846, 98	Kataoka & Stawarz 2005, ApJ, 622, 797	Kutkin et al. 2014, MNRAS, 437, 3396
	Liodakis et al. 2020, ApJ, 902, 61	Lister et al. 2018, ApJS, 234, 12	Marscher 1983, ApJ, 264, 296	Pushkarev et al. 2017, MNRAS, 468, 4992