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1) Introduction
Nearby radio galaxies are ideal targets for in-
vestigating the physical phenomena of relativis-
tic jets. 3C111 contains one of the brightest
cores at the cm/mm wavelengths among radio
galaxies and exhibits variable emission span-
ning several Jy. Given its proximity (z = 0.049),
3C111, is an excellent source to explore the jet
physics with mm-VLBI observations. We per-
form a study using multi-frequency (5 GHz, 8
GHz, 15 GHz, 21 GHz, 43 GHz, 86 GHz) VLBA
observations. We present various results such
as the core shift, the spectral index between
8 GHz and 15 GHz, the brightness tempera-
ture and equipartion magnetic field relation for
the modelfit components at different frequen-
cies and the Rotation Measure map between
5-8-15 GHz.

2) Core shift and Spectral index
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Fig. 1: Left panel : The core shift effect [1] on 3C111 computed as r ∝ νk . The best fit line is plotted in
magenta. The index k = −1.20 ± 0.18 is in agreement with the literature [2]. Right panel : Spectral index map
(Sν ∝ να) between 8 and 15 GHz. The contours describe the 15 GHz emission. The spectral index distribution
spans from α ≈ 0.4 in the central region, to α ≈ −2 in the extended region in agreement with a self-absorbed
synchrotron spectrum.

3) Brightness distribution

Fig. 2: Modelfit components in 3C111 obtained using difmap, plotted over the 5 GHz contours. The two
insets show the inner regions, plotted over the 21 GHz and 43 GHz. The components size θ correlates with
their distance from the core r : r ∝ θ1.09±0.12. Moreover, the equipartion magnetic field Heq scales as Heq ∝
θ−1.08±0.04, suggesting adiabatic expansion of the components [3].

4) TB and Heq

Fig. 3: Brightness temperature TB (estimated as
TB ≈ 1.22 × 1012F (ν)(1 + z)/(θ2ν2) [4]) in [K] vs
equipartion magnetic field Heq (estimated as Heq =
(3L/4V )2/7 × 104 [5]) in [mG] in logarithmic scale.
The dashed colored lines represent the best fit for
the data points of each frequencies. These suggest
a strong correlation between these physical quan-
tities for each frequency, with an average trend of
TB ∝ H2.62±0.11

eq . Such a tight correlation spanning
several orders of magnitude, could find a natural ori-
gin in the common dependence between TB and Heq .

5) Rotation Measure
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Fig. 4: Rotation measure map between 5,8 and 15 GHz plotted on the 15 GHz contours. The white bars
corresponds to the Faraday-corrected EVPAs. The magnetic field orientation has a coherent gradient that
spans from being perpendicular to the jet axis to being almost parallel to it, in the same jet region, in agreement
with the simulations for a helical structure [6].

6) Summary & future studies
From the wide range of frequencies used, we
observe unique features both in total intensity
and polarizartion. This work provides interest-
ing insights on the physical properties of 3C111
such as at the TB-Heq relation or the possible
helical structure of the magnetic field in its out-
flow. We highlight that the analysis carried out,
can be used for a concrete comparison with
the simulations. Moreover, our observations
took place shortly after a γ-ray flare, and so
they could be used to explore the behaviour of
HERGs during the flaring activity.
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