A CP-Based Approach to Popular Matching

Sorina Chica, Mohamed Siala, Gilles Simonin, Barry O’Sullivan
Insight Centre for Data Analytics, University College Cork, Ireland
(sorina.chica, mohamed.siala, gilles.simonin, barry.osullivan)@insight-centre.org

Introduction
The popular matching problem involves finding a matching M between applicants and posts such that there exists no matching M' where more applicants prefer M' to M.

Let $G = (A \cup P, E)$ be an instance of the popular matching problem, where
- A are the set of applicants
- P the set of posts
- E is set of edges.

Goal
Propose a Constraint Programming (CP) model to solve the popular matching problem.

Definition A matching M is popular iff there is no matching M' that is more popular than M.

Figure 1: An instance that doesn’t admit a popular matching.

Previous work
Stable Matching Problems (SM) and its variants in a CP context have been exhaustively studied. Some efficient algorithms for solving popular matching problems, e.g., [Abraham et al.].

Description
- One integer variable x per applicant a.
- Domain of a is $D(a) = \{(a, p_i) \in E \} \cup \{l\}$.

For each applicant a, we denote by
- $f(a)$ the best post in its preference list, called f-post.
- l the last-resort post $\notin P$, called l-post.

A post $p_j \in P$ is called an f-post if $\forall a \in A$ such that $f(a) = p_j$.

Preferences without ties
For each applicant a, we denote by $s(a)$ the best choice for a_j that is not an f-post, called s-post.

Lemma [Abraham et al.] A matching M is popular iff the following conditions hold:
- Every f-post is matched, and
- For each applicant a, $M(a) \in \{f(a), s(a)\}$.

GCC model
The domain of every variable x_i is reduced to be exactly $\{f(a), s(a)\} \forall i \in [1, |A|]$.

Next, we define $lb(i)$ and $ub(i)$ as follows:
- $lb(i) = 1$ if p_i is an f-post, else $lb(i) = 0$.
- $ub(i) = 0$ if $p_i \in A$, $f(a) \neq p_i$ and $s(a) \neq p_i$, else $ub(i) = 1$.

Theorem [Chica et al.]
If $GCC(lb, ub, \{x_1, \ldots, x_n\})$ is satisfiable iff M is a popular matching.

Preferences with ties
The definition of $s(a)$ is no longer the same. In this case it may contain a number of surplus f-posts.

Let $G_1 = (A \cup P, E_1)$ be a bipartite graph of top choices.

Let M be a maximum cardinality matching in G_1.

Lemma (Gallai-Edmonds decomposition) Let E, O, and U be the vertices sets defined by G_1 and M above.
- E, O, and U are a partition of $A \cup P$ and any maximum matching in G_1 leads to exactly the same sets E, O, and U.

Every node in O (resp. U) is matched to a node in E (resp. U) and $|V|=|E|+|O|/2$.

No maximum matching of G contains an edge between two nodes in E, a node in O and a node in U.

The s-posts are defined as the top choice(s) for a_j that is not in E.

Figure 2: An example with ties, a maximum matching in bold and the E, O, U labeling.

Lemma [Abraham et al.] A matching M is popular iff the following conditions hold:
- $M \cap E_1$ is a maximum matching of G_1, and
- For each applicant a, $M(a) \in \{f(a), s(a)\}$.

GCC model
The domain of every variable x_i is reduced to be exactly $\{f(a) \cup s(a)\} \forall i \in [1, |A|]$.

Using Gallai-Edmonds decomposition as preprocessing rules we will prune the domain of the variables.

We can define $lb(i)$ and $ub(i)$ as follows:
- $lb(i) = 1 \forall j \in E \times [1, |I|]$.
- $ub(i) = 0 \forall j \in O \times [1, |I|]$.
- $s(a) \neq p_i$.

Theorem [Chica et al.]
If $GCC(lb, ub, \{x_1, \ldots, x_n\})$ is satisfiable iff M is a popular matching with ties.

Popular Matching with Copies
Consider the case where extra copies of posts are allowed in order to find a solution. This problem is called the FixingCopies problem and it is well known to be NP-complete. Assume that the FixingCopies problem does not have a solution for the basic instance I.

This problem can be divided into two parts:
- The decision of the number of copies for each post that defines an instance I' of the popular matching problem.
- Solving the popular matching problem given by I'.

The difficulty of this problem is to find which post should be copied first in order to find a solution quickly.

An Automaton for the Posts
Using our new graph results about any copy of a post in the sets E, O, U we obtain the following automaton:

Figure 3: The effect of a post copy in black the E-posts, in red the maximum matching selected, in green the s-posts selected.

Pruning
For any instance I, we denote by F^2 the set of posts that are not f-posts or s-posts.

Lemma Let I and I^* be two instances where I^* is built from I by copying some posts. Any post in F^2 is in F^2.

Theorem Let I be an instance without a popular matching, and let $p_i \in F^2$. Any instance with a popular matching, obtained from I by copying some posts, remains popular even with the original number of copies of p_i from I.

Results

Table 1: Popular matching: Running time of standard algorithm vs. CP model.

<table>
<thead>
<tr>
<th># Applicants</th>
<th>50k</th>
<th>10k</th>
<th>25k</th>
<th>50k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>144</td>
<td>160</td>
<td>177</td>
<td>219</td>
</tr>
<tr>
<td>Mistral</td>
<td>152</td>
<td>168</td>
<td>215</td>
<td>215</td>
</tr>
</tbody>
</table>

Without ties

With ties

Figure 4: Illustration of the automaton.

Figure 5: Experimental results of the FixingCopies instances.

Conclusions
- Proposed the first CP formulation for the problem of popular matching involving possibly ties.
- Studied the extended version where additional copies of posts can be added.

References