Energy Saving Protocols for Multi Channel Multi Radio Wireless Mesh Networks Samreen Umer Supervisors: Cormac J. Sreenan Kenneth N. Brown

Problem Statement

Designing energy saving protocols for multi radio multi channel wireless

Recent Results

mesh networks while maintaining the network performance within desired bounds.

Figure: A Multi Radio Mesh Network

Background

Conventional energy saving methods for single radio networks are not straight forwardly implementable for multi radio scenarios and face many challanges:

- Complex Synchronization.
- Additional switching costs due to dynamic channel assignment.
- Inefficient resource utilization.

Contributions

We proposed distributed energy saving protocols for MRMC where each

Figure: Energy Consumption Over Increasing Number of Flows

Comparison of Throughput

node can make a decision to switch radios into AWAKE or SLEEP mode based on desired delay thresholds for traffic. Delay threshold is a maximum time delay allowed for any flow to wait before its next transmission.

In first protocol Enhanced Energy Saving Mechanism (EESM)^[1] we defined a fixed delay threshold for all the traffic flows. Nodes try to minimise number of radios in awake mode while maintaining the resulting delay within this threshold bound.

In Advanced Energy Saving Mechanism (AESM)^[2] a dynamic threshold is estimated for each traffic flow based on its traffic type and route length. Radio resources are assigned to the flow while keeping minimum possible number of radios in awake mode without exceeding the desired delay threshold.

In our third proposed algorithm Energy Saving Routing (ESR), we implemented a cross layer energy saving protocol which assigns the routes to the flows based on their desired QoS while optimizing the energy consumption of the network. Delay sensitive traffic flows have higher priority for switching sleeping radios to wake mode and choosing shorter path lengths. Less delay sensitive flows can be routed over slightly longer but already active paths in order to avoid waking up additional radios. Simulations showed promising results when evaluated in terms of delays, packet loss and total energy consumption for different traffic types at the same time in the network. Figure: Mean Packet Loss.

Figure: Mean Throughput.

Timeline

Figure: Thesis Timeline

	Oct, 2013	Oct, 2014	Oct, 2015	Oct, 2016	Oct, 2017	Oct, 2018	Oct, 2019
Literature Review							
Survey on distributed channel assignment schemes in MRMC WMN							
Implementation of MRMC in ns3							
Implementation of channel assignment schemes							
Semi dynamic SICA implementation							
Literature Review on energy saving mechanisms in WMN							
Implementation of Energy Model in ns3							
EESM implementation and evaluation, paper writeup							
Survey on scheduling and routing protocols for MRMC WMN							
AESM implementation and evaluation, paper writeup							
Designing Energy saving cross layer routing mechanism (ESRM)							
ESRM evaluation, paper writeup							
Thesis Writeup							

References

[1] – S. Umer, K.N. Brown, and C.J. Sreenan. Enhanced Energy Saving Mechanism for multi-radio multi- channel wireless mesh networks. In Global Wire- less Summit (GWS), Aarhus, Denmark, November 2016. IEEE, 2016.
[2] – S. Umer, K.N. Brown, and C.J. Sreenan. Advanced Energy Saving Mechanism for multi-radio multi-channel wireless mesh networks. In International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Bologna Italy, September 2018. IEEE, 2018.

A World Leading SFI Research Centre

This research is conducted with the financial support of Science Foundation Ireland(SFI) under the CTVR (SFI 10/CE/I 1853) and CONNECT(13/RC/2077) grants.

