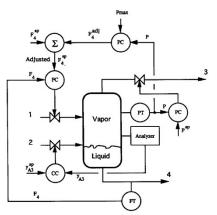


Improving security and resilience of Cyber Physical Systems **Distinction between attacks and faults**

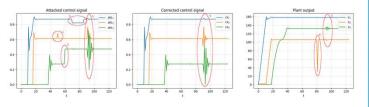
Riccardo Orizio, Prof. Gregory Provan


General Problem

Can we create a tool that can help Cyber Physical Systems in *detecting*, *identifying* and *correcting* an anomaly whenever one would occur? Can it be used for critical systems?

□ Impact

- Innovative: combination of model based and data driven techniques;
- Adaptable to different systems;
- Efficient and reactive.


Model of the Tennessee Eastman Process, used for testing. (Ricker, 1993)

Methodologies

- Pure model based: $x_i = f_i^{-1}(y_i)$;
- Residuals study: $r_i = \tilde{y}_k C\hat{x}_k$;
- Algebraic, residuals and patterns: r_i , $\frac{\delta^{(I,II,III)}}{\delta t}y$;
- Data driven: NN, HMM, LSTM.

Results

Anomaly distinction: attacks vs faults;

- Increased NN detection and identification success rate from 10% to 90%.

Future

- Integration of HMM and LSTM methods;
- Improving identification effectiveness;
- Testing on real systems data (e.g. FCU and HVAC systems).

Publications

- Physics-Based Methods for Distinguishing Attacks from Faults, CENICS 2017
- Comparing Physics-Based Methods for Distinguishing Attacks from Faults, DX'18

European Union ropean Regional velopment Fund

