

# Empowering Video Players in Cellular: ML-enabled Throughput Prediction



*Supervisors: Prof. Cormac Sreenan and Dr. Ahmed Zahran*

# Darijo Raca



# Introduction

- Video is almost 58% of the total downstream volume of traffic on the internet
  - YouTube accounts for 35% of worldwide mobile traffic

## Most annoying problems when streaming a video



## Challenges

- Data rate in cellular networks may fluctuate by an order of magnitude over a span of a few seconds
  - As a result, video streaming players struggle to adapt to sudden changes, leading to **low quality** and increased **re-buffering events**

# Motivation

- Most of video quality adaptation algorithms rely on bandwidth estimate calculated using one of the standard smoothing techniques (arithmetic, harmonic or EWMA)
  - **Idea:** Improve accuracy of **estimator** by leveraging additional information about channel characteristics (SNR, CQI...)



- Use a Machine Learning approach to predict future throughput values

# Throughput Prediction via ML

- **What does a streaming algorithm need?** - predicted average throughput for the decision for next streaming quality (in addition to buffer application state...)
  - **Methodology** - use historical data (past throughput, channel information) to train ML algorithm (Random Forest)
  - **How to represent history of each metric?**
    - *Quantile* approach: estimate unknown distribution of historical data by percentiles
    - *Raw* approach: use samples directly as input

## Results

- **Accuracy metrics** - ratio of the difference between actual and predicted throughput and actual throughput (ARE)



# Video Player with TP - Controlled Experiment



- Prediction enables all algorithms to reduce/eliminate stalls, improve switching stability and average stability

# Real Time Prediction

- Prediction engine implemented in a real device as a part of ExoPlayer



- Prediction improves all QoE metrics