
A World Leading SFI Research Centre

Optimization in Interactive Constraint System Based on Expected

Preferences

Hong Huang Barry O’Sullivan

Abstract
Constraint satisfy problem (CSP) is very useful in formulating many
real-life problems. The flexibility of soft constraints in CSP allows the user
to express the degree of satisfaction of a constraint, rather than
satisfaction or violation in hard constraints.
The key to solving CSP that Involving soft constraints is to acquiring
constraint and solution preferences to find a solution that satisfies the
problem the most. Many efficient techniques and frameworks have been
proposed for finding the best solutions for the constraint satisfaction
problem. However, in many real-life problem users cannot express their
preferences over subjects accurately and instantly. An example of such
situations is when users can only express partial preference or conflict with
their other decisions. Also, less attention has been paid to the cost of
satisfying such a problem.
In this paper, the problem is based on an interactive framework where the
user can express preferences over constraints and solutions, and the
sequence of solutions. We consider a simple algorithm to limit the cost of
adapting the system to meet user’s expression, in addition to search for the
best products that satisfy user’s demand.

Introduction
For many real-life problems, there are a lot of recent works have proven
that constraints are very useful. In some of the interaction frameworks
(e.g. [1]), where combining the standard soft constraint solver and learning
modules, it is allowed that users post preferences both over constraints and
over solutions. Many techniques and extension of classical CSP have been
proposed and developed to make CSP more useful and flexible in describing
the real-life problems, which is making CSP more powerful and reliable in
solving the problem of acquiring the users’ preference in such an interactive
system. Some well-studied examples of the extension of classical CSP are
Weighted Partial MAX-SAT (WPMS) and Fuzzy CSP (FCSP), etc.

Algorithm
It is a simple version of our algorithm, but one can give a brief idea of how
the interactive constraint system work and react to the feedback given by
the user.
Algorithm 1: optimize the preference to meet user’s requirement

Data: R; \\R is the requirement from the user.
Integer: m, n; n ∈ {1, ...,m}; Integer: i, j; j ∈ {1, ..., i};
\\m is the total number of sols; i is the total number of cons.
Constraint: C1, ..., Ci; Number: P 1

C1
, P 1

C2
, ..., Pm

Ci
∈ [0, ..., 1];

Result: Number: P ′1C1
, P ′1C2

, ..., P ′mCi
∈ [0, ..., 1];

Boolean: F 1
C1
, F 1

C2
, ..., Fm

Ci
∈ {0, 1};

Objective function:minimize: F 1
C1
+ F 1

C2
+ ... + Fm

Ci
;.S.T

getOrder(getPreference(P ′1C1
, ..., P ′1Ci

), ..., getPreference(P ′mC1
, ..., P ′mCi

)) ==
getOrder(R);
(1− F 1

C1
) ∗ P 1

C1
== (1− F 1

C1
) ∗ P ′1C1

;
...
(1− F 1

Ci
) ∗ P 1

Ci
== (1− F 1

Ci
) ∗ P ′1Ci

;
...
(1− Fm

Ci
) ∗ Pm

Ci
== (1− Fm

Ci
) ∗ P ′mCi

;
if getVariable(Cn

j) ≡ getVariable(Cn′
j) then

P n
j ≡ P n′

j ; F n
j ≡ F n′

j ; P ′nj ≡ P ′n
′

j ;

Experiment
In each iteration, the system gives top k (k = 10 corresponding to the
following experiment result) solutions to the user and asks for user’s
feedback. We recorded the runtime during the acquiring process. After the
acquiring process, we synchronized the preference value of constraints for
the rest of data. Then, all the solutions are re-rank in order to find the
best k solutions which are going to be used for asking the user’s
satisfaction. The acquiring process will stop when it finds all the optimal
solution to the user or after n (n = 10 in our experiment) iterations.

Table: Benchmarks and results obtained.
Benchmark Details Results

#Total #Opt Sparse Only Sols Preference Both Sols & Single Art
Items Sols Factor #Iters Time(s) Eva #Iters Time(s) Eva

1000 1 10 10 1.776 0.0432 2.8 1.829 0.098
1000 1 20 10 1.807 0.0184 8.4 1.793 0.0268
1000 5 10 8.6 1.827 0.0686 6.4 1.843 0.0924
1000 5 20 7.4 2.979 0.0318 1 1.631 0.0626
1000 15 10 8.8 1.947 0.2426 4.6 1.859 0.3700
1000 15 20 4 2.067 0.2514 1 1.843 0.3059
5000 1 10 10 8.914 0.0329 10 9.254 0.0264
5000 1 20 10 8.102 0.0264 6.4 7.898 0.0086
5000 5 10 10 9.052 0.0985 8.2 8.920 0.1393
5000 5 20 10 8.433 0.0580 4 7.133 0.0730
5000 15 10 10 8.846 0.2480 8.2 8.782 0.3087
5000 15 20 10 7.633 0.2736 8.2 6.622 0.3431
10000 1 10 10 22.402 0.0096 10 24.281 0.0097
10000 1 20 10 18.073 0.0149 10 17.128 0.0163
10000 5 10 10 22.581 0.0404 10 22.472 0.1615
10000 5 20 10 19.220 0.0645 8.2 16.990 0.1689
10000 15 10 8.2 22.023 0.2672 8.2 22.522 0.3573
10000 15 20 10 16.343 0.2347 8.2 16.917 0.2706

The datasets in our experiments are all randomly generated. The items in
these datasets are all containing 7 attributes and 4 constraints over the
attributes. The deviation index of results are represented as Eva in
Table 1. The results showed in Table 1 are the mathematical average of
the results of 5 experiment runs. The calculation for the deviation index in
our experiments is: Eva = 1

n

∑n
i=1

(Oi−i)
m (where n is the number of the

Oracle optimal solutions, m is the number of total items, Oi is the index
of solution i in the optimal order with respect to all the items). For the
results, lower the deviation index value means better solutions it found.

Future work
I Study different scenarios in order to tackle the problem better and

reduce the runtime and iterations.
I Theoretically estimate the least iterations that are required to find

the optimal solutions or restore the optimal order of all solutions
respected to user’s preferences.

References
Rossi, F., Sperduti, A.: Acquiring both constraint and solution
preferences in interactive constraint systems. Constraints 9(4), 311–332
(2004)

This work has been supported by a research grant by Science
Foundation Ireland under grant number SFI/12/RC/2289

