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Active Learning
An Active Learning (AL) algorithm interrogates the user to obtain
additional training examples that it reasons will be useful for building a
better model. Asking the user for preference information has:

I a cost (the effort it places on the user), and
I a possible benefit (improvements to the recommendations).

Different AL strategies take different approaches to identifying which items
to ask the user about: we seek the best strategy, which asks
the user for as little additional information as possible
(reducing the cost) while obtaining the most benefit.

Figure: Example of a movie collaborative recommender eliciting user ratings using Active
Learning.

Research objectives

Preliminary Offline experiments
We applied our methodology to compare 3 AL strategies from the
literature:

I popularity : asking for most popular items (non-personalized
strategy).

I highest-predicted : asking for items which the recommender thinks
the user will like (personalized strategy).

I binary-predicted : asking for items that are likely to be familiar to
the user (personalized strategy).
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Accuracy results, user−centric vs. system−wide
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Beyond−accuracy results, user−centric vs. system−wide
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Novelty and serendipity results for Respondents by profile size

Future & research directions
I Extend the analysis of results, so we can see results not just by

profile size but also perhaps by rating variance and profile diversity.
I Employ a similar evaluation method for situations where AL is used

to boost the ratings of new items and more mature items
(item-perspective).

I To use our method to help us design new AL strategies targeted to
improving beyond-accuracy metrics.

I To use our method to help us design new AL strategies that are
better targeted to the needs of different kinds of users.
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