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Active Learning Preliminary Offline experiments
An Active Learning (AL) algorithm interrogates the user to obtain We applied our methodology to compare 3 AL strategies from the
additional training examples that it reasons will be useful for building a literature;
better model. Asking the user for preference information has: » popularity: asking for most popular items (non-personalized
» a cost (the effort it places on the user), ana strategy ).
» a possible benefit (improvements to the recommendations). » highest-predicted: asking for items which the recommender thinks

the user will like (personalized strategy).

» binary-predicted: asking for items that are likely to be familiar to
the user (personalized strategy).

Different AL strategies take different approaches to identifying which items
to ask the user about: we seek the best strategy, which asks
the user for as little additional information as possible
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Research objectives

Novelty and serendipity results for Respondents by profile size
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- . » Extend the analysis of results, so we can see results not just by
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orofile size but also perhaps by rating variance and profile diversity.
» Employ a similar evaluation method for situations where AL is used
to boost the ratings of new items and more mature items
WHAT we evaluate - (item-perspective).
o o » To use our method to help us design new AL strategies targeted to
- Existing strategies in literature improving beyond-accuracy metrics.
- New strategies » To use our method to help us design new AL strategies that are
Beyond-accuracy tarqeted better targeted to the needs of different kinds of users.

Personalized For every user

This work has been supported by a research grant by Science

Foundation Ireland under grant number SFI/12/RC/2289 @
DC

niversity College Cork, Ireland
Colaiste na hOllscoile Corcaigh

Science Sfl
Foundation

Ireland For what's next



