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Objective

To introduce a novel technique that uses an auto-encoder to
remove noise and find a minimum latent space to encode a
time window of data. These stacked encodings are then feed
into a sequential DL model to train and carry out inference.
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are a relatively new network for sequential data, but boosts many
advantages. They have an increased memory depth and also have the
ability to be parallelized. This, along with a non-sequential flow,
enables a TCN to be 1-2 orders of magnitude faster.
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Pre-process: Dim reduction
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Conclusions and Future Work

We introduced a DL process to accurately predict human activity to
state-of-the-art results. Our method is non-intrusive as it requires no
attached sensors like the majority of similar publications. Instead it uses
the disturbance in WiFi signals to generate a spectrograph of the
environment, which is then used as inputs to the DL model.

A temporal convolutional network is chosen as the sequential model,
which we believe is the first time in this area it is used, due to its
computational efficiency performance over a LSTM.

For future work, we hope to overcome problems with spatial and
temporal generalization.
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