Almost Perfect Nonlinear Functions

Faruk Göloğlu

Claude Shannon Institute, University College Dublin

CSI Workshop on Coding and Cryptography, UCC
May 18, 2010
Block Ciphers

A Block Cipher can be seen as:

\[B : \{0, 1\}^m \rightarrow \{0, 1\}^m. \]

Claude Shannon introduced the properties **confusion** and **diffusion**.

Confusion introduces complexity or non-linearity to the system and is achieved generally by the S-Box.

Question

How do we define non-linearity?
A Block Cipher can be seen as:

\[\mathcal{B} : \{0, 1\}^m \rightarrow \{0, 1\}^m. \]
A Block Cipher can be seen as:

$$\mathcal{B} : \{0, 1\}^m \rightarrow \{0, 1\}^m.$$

Claude Shannon introduced the properties *confusion* and *diffusion*.
A Block Cipher can be seen as:

\[B : \{0, 1\}^m \rightarrow \{0, 1\}^m. \]

Claude Shannon introduced the properties \textit{confusion} and \textit{diffusion}.

Confusion introduces complexity or non-linearity to the system.
A Block Cipher can be seen as:

$$B : \{0, 1\}^m \rightarrow \{0, 1\}^m.$$

Claude Shannon introduced the properties \textit{confusion} and \textit{diffusion}.

Confusion introduces complexity or non-linearity to the system and achieved generally by the S-Box.
Block Ciphers

- A Block Cipher can be seen as:

\[B : \{0, 1\}^m \rightarrow \{0, 1\}^m. \]

- Claude Shannon introduced the properties \textit{confusion} and \textit{diffusion}.

- Confusion introduces complexity or non-linearity to the system and achieved generally by the S-Box.

Question

\textit{How do we define non-linearity?}
Nonlinearity

Definition

Non-linearity of a function is the ‘distance’ of it to all linear (affine) functions.
Nonlinearity

Definition

Non-linearity of a function is the ‘distance’ of it to all linear (affine) functions.

We are interested in *Vectorial Boolean Functions*, i.e.,

\[f : \mathbb{F}_2^m \rightarrow \mathbb{F}_2^m. \]
Nonlinearity

Definition

Non-linearity of a function is the ‘distance’ of it to all linear (affine) functions.

We are interested in **Vectorial Boolean Functions**, i.e.,

\[f : \mathbb{F}^m_2 \rightarrow \mathbb{F}^m_2. \]

Let \(\mathbb{F} = \mathbb{F}_{2^m} \). For a linear function \(l \):

\[l(x) + l(x + a) = l(a), \]

for any \(x \in \mathbb{F} \), i.e.,
Nonlinearity

Definition
Non-linearity of a function is the ‘distance’ of it to all linear (affine) functions.

We are interested in *Vectorial Boolean Functions*, i.e.,

\[f : \mathbb{F}_2^m \to \mathbb{F}_2^m. \]

Let \(F = \mathbb{F}_{2^m} \). For a linear function \(l \):

\[l(x) + l(x + a) = l(a), \]

for any \(x \in F \), i.e.,

\[D_l(a) := \{ l(x) + l(x + a) : x \in F \} = \{ l(a) \}. \]
Nonlinearity

Definition
Non-linearity of a function is the ‘distance’ of it to all linear (affine) functions.

We are interested in Vectorial Boolean Functions, i.e.,

\[f : \mathbb{F}_2^m \to \mathbb{F}_2^m. \]

Let \(\mathbb{F} = \mathbb{F}_{2^m} \). For a linear function \(l \):

\[l(x) + l(x + a) = l(a), \]

for any \(x \in \mathbb{F} \), i.e.,

\[D_l(a) := \{ l(x) + l(x + a) : x \in \mathbb{F} \} = \{ l(a) \}. \]

By ‘non-linear’ we mean \(\#D_f(a) \) as large as possible.
APN functions

How large can \(\#D_f(a) \) be?

If \(F = F_2^m \) then
\[
f(x) + f(x + a) = f(x + a) + f((x + a) + a).
\]
Hence, \(\#D_f(a) \leq 2^m - 1 \).

Definition

\(f \) is Almost Perfect Nonlinear (APN) if for all \(a \in F^* \),
\[
\#D_f(a) = 2^m - 1.
\]

If characteristic of \(F \) is odd, Perfect Nonlinear functions exist.

Faruk Göloğlu
APN Functions
APN functions

How large can $\#D_f(a)$ be?

If $\mathbb{F} = \mathbb{F}_{2^m}$ then

$$f(x) + f(x + a) = f(x + a) + f((x + a) + a).$$
How large can \(\#D_f(a) \) be?
If \(\mathbb{F} = \mathbb{F}_{2^m} \) then

\[
f(x) + f(x + a) = f(x + a) + f((x + a) + a).
\]

Hence, \(\#D_f(a) \leq 2^{m-1} \).
How large can $\#D_f(a)$ be?
If $\mathbb{F} = \mathbb{F}_{2^m}$ then

$$f(x) + f(x + a) = f(x + a) + f((x + a) + a).$$

Hence, $\#D_f(a) \leq 2^{m-1}$.

Definition

f is *Almost Perfect Nonlinear (APN)* if for all $a \in \mathbb{F}^*$,

$$\#D_f(a) = 2^{m-1}.$$
How large can $\#D_f(a)$ be?
If $\mathbb{F} = \mathbb{F}_{2^m}$ then

$$f(x) + f(x + a) = f(x + a) + f((x + a) + a).$$

Hence, $\#D_f(a) \leq 2^{m-1}$.

Definition

f is *Almost Perfect Nonlinear (APN)* if for all $a \in \mathbb{F}^*$,

$$\#D_f(a) = 2^{m-1}.$$

If characteristic of \mathbb{F} is odd, Perfect Nonlinear functions exist.
APN example

Let $f = x^3$.
Let $f = x^3$.

$$D_f(a) = \{ x^3 + (x + a)^3 \}$$
$$= \{ x^3 + x^3 + x^2a + a^2x + a^3 \}$$
$$= \{ x^2a + a^2x + a^3 \}$$
$$= \{ a^3 \left[\left(\frac{x}{a} \right)^2 + \frac{x}{a} + 1 \right] \}$$
$$= \{ a^3 (y^2 + y + 1) \}$$

with $ay = x$.
Let $f = x^3$.

\[
D_f(a) = \{x^3 + (x + a)^3\} \\
= \{x^3 + x^3 + x^2a + a^2x + a^3\} \\
= \{x^2a + a^2x + a^3\} \\
= \{a^3 \left[\left(\frac{x}{a} \right)^2 + \frac{x}{a} + 1 \right] \} \\
= \{a^3(y^2 + y + 1)\}
\]

with $ay = x$.

- $H_\alpha := \{x \in \mathbb{F} : \text{Tr}(\alpha x) = 0\}$, where

$\text{Tr}(z) = z + z^2 + \cdots + z^{2^{m-1}}$.

Faruk Göloğlu APN Functions
APN example

Let \(f = x^3 \).

\[
D_f(a) = \{ x^3 + (x + a)^3 \} \\
= \{ x^3 + x^3 + x^2a + a^2x + a^3 \} \\
= \{ x^2a + a^2x + a^3 \} \\
= \{ a^3 \left[\left(\frac{x}{a} \right)^2 + \frac{x}{a} + 1 \right] \} \\
= \{ a^3(y^2 + y + 1) \}
\]

with \(ay = x \).

- \(H_\alpha := \{ x \in \mathbb{F} : \text{Tr} (\alpha x) = 0 \} \), where \(\text{Tr} (z) = z + z^2 + \cdots + z^{2^{m-1}} \).
- Image of \(y^2 + y \) is \(H_1 \).
APN example

Let \(f = x^3 \).

\[
D_f(a) = \{ x^3 + (x + a)^3 \} \\
= \{ x^3 + x^3 + x^2a + a^2x + a^3 \} \\
= \{ x^2a + a^2x + a^3 \} \\
= \{ a^3 \left(\frac{x}{a} \right)^2 + \frac{x}{a} + 1 \} \\
= \{ a^3(y^2 + y + 1) \}
\]

with \(ay = x \).

- \(H_\alpha := \{ x \in \mathbb{F} : \text{Tr} (\alpha x) = 0 \} \), where \(\text{Tr} (z) = z + z^2 + \cdots + z^{2^{m-1}} \).
- Image of \(y^2 + y \) is \(H_1 \).
- \(H_\alpha = \alpha^{-1}H \).
Crooked functions

This example gives an example of a crooked function.
Crooked functions

This example gives an example of a crooked function.

Definition

A function f is **crooked** if for all $a \in \mathbb{F}^*$, $D_f(a)$ is an affine hyperplane.

$$ f(x) := \sum_{d \in D} a_d x_d. $$

Note that one can choose $D = \{0, \ldots, q-1\}$.

Define the 2-weight of d as

$$ d = \sum_{i=0}^{m-1} d_i 2^i. $$

The 2-degree of a function is the maximal 2-weight of $d \in D$.
Crooked functions

This example gives an example of a *crooked function*.

Definition

f is *crooked* if for all $a \in \mathbb{F}^*$, $D_f(a)$ is an affine hyperplane.

- Write f as (with $a_d \in \mathbb{F}^*$).

\[
 f(x) := \sum_{d \in D} a_d x^d.
\]
Crooked functions

This example gives an example of a crooked function.

Definition

\(f \) is crooked if for all \(a \in \mathbb{F}^* \), \(D_f(a) \) is an affine hyperplane.

- Write \(f \) as (with \(a_d \in \mathbb{F}^* \)).

\[
f(x) := \sum_{d \in D} a_d x^d.
\]

- Note that one can choose \(D := \{0, \ldots, q - 1\} \).
Crooked functions

This example gives an example of a *crooked function*.

Definition

\(f \) is *crooked* if for all \(a \in \mathbb{F}^* \), \(D_f(a) \) is an affine hyperplane.

- Write \(f \) as (with \(a_d \in \mathbb{F}^* \)).

\[
 f(x) := \sum_{d \in D} a_d x^d.
\]

- Note that one can choose \(D := \{0, \ldots, q - 1\} \). And \(d = \sum_{i=0}^{m-1} d_i 2^i \).
Crooked functions

This example gives an example of a *crooked function*.

Definition

f is *crooked* if for all $a \in \mathbb{F}^*$, $D_f(a)$ is an affine hyperplane.

- Write f as (with $a_d \in \mathbb{F}^*$).

\[f(x) := \sum_{d \in D} a_d x^d. \]

- Note that one can choose $D := \{0, \ldots, q - 1\}$. And
 \[d = \sum_{i=0}^{m-1} d_i 2^i. \text{ Define 2-weight of } d \text{ as } d = \sum_{i=0}^{m-1} d_i. \]
Crooked functions

This example gives an example of a *crooked function*.

Definition

f is *crooked* if for all $a \in \mathbb{F}^*$, $D_f(a)$ is an affine hyperplane.

- Write f as (with $a_d \in \mathbb{F}^*$).

$$f(x) := \sum_{d \in D} a_d x^d.$$

- Note that one can choose $D := \{0, \ldots, q - 1\}$. And $d = \sum_{i=0}^{m-1} d_i 2^i$. Define 2-weight of d as $d = \sum_{i=0}^{m-1} d_i$.

- 2-Degree of a function is the maximal 2-weight of $d \in D$.
Some problems

- (Kyureghyan ’06) Crooked monomials are quadratic.
Some problems

- (Kyureghyan ’06) Crooked monomials are quadratic.
- (Kyureghyan, Bierbrauer ’08) Crooked binomials are quadratic.
(Kyureghyan ’06) Crooked monomials are quadratic.
(Kyureghyan, Bierbrauer ’08) Crooked binomials are quadratic.
The crooked problem:

Question

Are all crooked functions quadratic?
Some problems

- (Kyureghyan '06) Crooked monomials are quadratic.
- (Kyureghyan, Bierbrauer '08) Crooked binomials are quadratic.
- The crooked problem:

Question

Are all crooked functions quadratic?

- Try $f \in \mathbb{F}_2[x]$?
Another measure for non-linearity

Let \(f : \mathbb{F}_{2^m} \to \mathbb{F}_{2^m} \). The \textit{coordinate functions} for a given basis \(\{ \beta_1, \ldots, \beta_m \} \) are:

\[
[\text{Tr} (\beta_1 f), \ldots, \text{Tr} (\beta_m f)].
\]
Another measure for non-linearity

Let $f : \mathbb{F}_{2^m} \to \mathbb{F}_{2^m}$. The coordinate functions for a given basis \(\{ \beta_1, \ldots, \beta_m \} \) are:

\[[\text{Tr} (\beta_1 f), \ldots, \text{Tr} (\beta_m f)]. \]

The component functions are linear combinations of the coordinate functions $\text{Tr} (\beta f)$ for any $\beta \in \mathbb{F}$.
Another measure for non-linearity

Let $f : \mathbb{F}_{2^m} \to \mathbb{F}_{2^m}$. The coordinate functions for a given basis \{\beta_1, \ldots, \beta_m\} are:

$$[\text{Tr} (\beta_1 f), \ldots, \text{Tr} (\beta_m f)].$$

The component functions are linear combinations of the coordinate functions $\text{Tr} (\beta f)$ for any $\beta \in \mathbb{F}$.

Another measure on non-linearity could be then the Hamming distance of component functions to affine (Boolean) functions.
Another measure for non-linearity

Let $f : \mathbb{F}_{2^m} \rightarrow \mathbb{F}_{2^m}$. The coordinate functions for a given basis $\{\beta_1, \ldots, \beta_m\}$ are:

$$[\text{Tr}(\beta_1 f), \ldots, \text{Tr}(\beta_m f)].$$

The component functions are linear combinations of the coordinate functions $\text{Tr}(\beta f)$ for any $\beta \in \mathbb{F}$.

Another measure on non-linearity could be then the Hamming distance of component functions to affine (Boolean) functions.

Definition

Walsh transform of a function is defined as follows.

$$\mathcal{W}_f(a, b) := \sum_{x \in \mathbb{F}} (-1)^{\text{Tr}(af(x) + bx)}$$
Definition

f is Almost Bent (AB) if for all $a \in \mathbb{F}^*$, $b \in \mathbb{F}$,

$$\mathcal{W}_f(a, b) \in \{0, \pm 2^{\frac{m+1}{2}}\}.$$
AB functions

Definition

f is Almost Bent (AB) if for all $a \in \mathbb{F}^*$, $b \in \mathbb{F}$,

$$\mathcal{W}_f(a, b) \in \{0, \pm 2^{m+1}/2\}.$$

Let m be odd,
AB functions

Definition

\(f \) is Almost Bent (AB) if for all \(a \in \mathbb{F}^*, b \in \mathbb{F}, \)

\[W_f(a, b) \in \{0, \pm 2^{\frac{m+1}{2}}\} \]

\[\bigwedge \]

Let \(m \) be odd,

- crooked \(\Rightarrow \) AB \(\Rightarrow \) APN.
AB examples

<table>
<thead>
<tr>
<th></th>
<th>Exponents d</th>
<th>Conditions</th>
<th>Proven in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold</td>
<td>$2^i + 1$</td>
<td>$\gcd(i, m) = 1$</td>
<td>[2]</td>
</tr>
<tr>
<td>Kasami</td>
<td>$2^{2i} - 2^i + 1$</td>
<td>$\gcd(i, m) = 1$</td>
<td>[4]</td>
</tr>
<tr>
<td>Welch</td>
<td>$2^t + 3$</td>
<td>$m = 2t + 1$</td>
<td>[3]</td>
</tr>
</tbody>
</table>
| Niho | $2^t + 2^{\frac{t}{2}} - 1$, t even
$2^t + 2^{\frac{3t+1}{2}} - 1$, t odd | $m = 2t + 1$ | [3] |

Table: Known AB exponents x^d on \mathbb{F}_{2^m}
APN monomials

<table>
<thead>
<tr>
<th>Function</th>
<th>Exponents d</th>
<th>Conditions</th>
<th>Proven in</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverse</td>
<td>$2^{2t} - 1$</td>
<td>$m = 2t + 1$</td>
<td>[5]</td>
</tr>
<tr>
<td>Dobbertin</td>
<td>$2^{4t} + 2^{3t} + 2^{2t} + 2^t - 1$</td>
<td>$m = 5t$</td>
<td>[1]</td>
</tr>
</tbody>
</table>

Table: Known (non-AB) APN exponents x^d on \mathbb{F}_{2^m}
Note that x^3 is a permutation on \mathbb{F}_{2^m} if and only if m is odd.
Note that x^3 is a permutation on \mathbb{F}_{2^m} if and only if m is odd.

Fact

*If m is odd, then APN monomials induce permutations on \mathbb{F}_{2^m}.***
Note that x^3 is a permutation on \mathbb{F}_{2^m} if and only if m is odd.

Fact

If m is odd, then APN monomials induce permutations on \mathbb{F}_{2^m}. If m is even, then APN monomials induce $3 - 1$ maps on $\mathbb{F}_{2^m}^*$.
Note that x^3 is a permutation on \mathbb{F}_{2^m} if and only if m is odd.

Fact

If m is odd, then APN monomials induce permutations on \mathbb{F}_{2^m}. If m is even, then APN monomials induce $3 - 1$ maps on $\mathbb{F}_{2^m}^*$.

Fact

(Dillon et. al.) There are APN permutations on \mathbb{F}_{2^6}.

Note that x^3 is a permutation on \mathbb{F}_{2^m} if and only if m is odd.

Fact

If m is odd, then APN monomials induce permutations on \mathbb{F}_{2^m}. If m is even, then APN monomials induce $3 - 1$ maps on $\mathbb{F}_{2^m}^$.***

Fact

*(Dillon et. al.) There are APN permutations on \mathbb{F}_{2^6}.***

Question

*(The big APN problem) Are there APN permutations on $\mathbb{F}_{2^{2m}}$, $m > 3$?***
Note that x^3 is a permutation on \mathbb{F}_{2^m} if and only if m is odd.

Fact

If m is odd, then APN monomials induce permutations on \mathbb{F}_{2^m}. If m is even, then APN monomials induce $3 - 1$ maps on $\mathbb{F}_{2^m}^$."

Fact

*(Dillon et. al.) There are APN permutations on \mathbb{F}_{2^6}."

Question

*(The big APN problem) Are there APN permutations on $\mathbb{F}_{2^{2m}}$, $m > 3$?"

Cryptographic significance: AES S-Box $f = x^{-1}$ on \mathbb{F}_{2^8} is not APN!
Let
- m odd,
- $k | m$,

$F \colon = F_2^m$,
$K \colon = F_2^k$,
$f \colon F \rightarrow F$,
$f \in K[x]$,
$f_K \colon K \rightarrow K$ is meaningful.

Question
Are properties of f, i.e. being APN, AB or crooked, inherited downwards?
Let

- m odd,
- $k | m$,
- $F := \mathbb{F}_{2^m}$,
- $K := \mathbb{F}_{2^k}$,
Let

- m odd,
- $k | m$,
- $\mathbb{F} := \mathbb{F}_{2^m}$,
- $\mathbb{K} := \mathbb{F}_{2^k}$,
- $f : \mathbb{F} \to \mathbb{F}, f \in \mathbb{K}[x]$,
Functions on subfields

Let

- m odd,
- $k | m$,
- $F := \mathbb{F}_{2^m}$,
- $K := \mathbb{F}_{2^k}$,
- $f : F \to F$, $f \in K[x]$,
- $f_K : K \to K$ is meaningful.
Let
- m odd,
- $k | m$,
- $\mathbb{F} := \mathbb{F}_{2^m}$,
- $\mathbb{K} := \mathbb{F}_{2^k}$,
- $f : \mathbb{F} \to \mathbb{F}, f \in \mathbb{K}[x]$,
- $f_K : \mathbb{K} \to \mathbb{K}$ is meaningful.

Question

Are properties of f, i.e. being APN, AB or crooked, inherited downwards?
Facts

- If \(f \) is APN, then \(f^K \) is APN.

- If \(f \) is crooked, then \(f^K \) is crooked.

- If \(f = x^e \) is AB, then \(f^K \) is AB.
Fact

\[f \text{ is APN} \Rightarrow f_K \text{ is APN.} \]
Fact
\[f \text{ is APN} \Rightarrow f_K \text{ is APN.} \]

Theorem
\[f \text{ is crooked} \Rightarrow f_K \text{ is crooked.} \]
Fact
\[f \text{ is APN} \implies f_K \text{ is APN}. \]

Theorem
\[f \text{ is crooked} \implies f_K \text{ is crooked}. \]

Theorem
\[\text{If } f = x^e \text{ is AB then } f_K \text{ is AB}. \]
If $f = x^d$ is AB on $\mathbb{F}_{2^m} = \mathbb{F}$, then

$$W_f(1) = \begin{cases}
+2^{(m+1)/2} & \text{if } m \equiv \pm 1 \pmod{8}, \\
-2^{(m+1)/2} & \text{if } m \equiv \pm 3 \pmod{8}.
\end{cases}$$
Question

(Under which conditions) does $f = x^d$ is AB on \mathbb{F}_{2^m} imply $f = x^d$ is AB on \mathbb{F}_{2^k}?
(Under which conditions) does $f = x^d$ is AB on \mathbb{F}_{2^m} imply $f = x^d$ is AB on \mathbb{F}_{2^k}?

- Quadratic case is simple.
Final problem

Question

(Under which conditions) does \(f = x^d \) is AB on \(\mathbb{F}_{2^m} \) imply \(f = x^d \) is AB on \(\mathbb{F}_{2^k} \)?

- Quadratic case is simple.
- Exponential case is known.
Final problem

Question

(Under which conditions) does $f = x^d$ is AB on \mathbb{F}_{2^m} imply $f = x^d$ is AB on \mathbb{F}_{2^k}?

- Quadratic case is simple.
- Exponential case is known.
- What about $f \in \mathbb{F}_2[x]$?
Final problem

Question

(Under which conditions) does \(f = x^d \) is AB on \(\mathbb{F}_{2^m} \) imply \(f = x^d \) is AB on \(\mathbb{F}_{2^k} \) ?

- Quadratic case is simple.
- Exponential case is known.
- What about \(f \in \mathbb{F}_2[x] \)? Will imply a generalization of our theorem.
Thanks for your attention.
Dobbertin, H.
Almost perfect nonlinear power functions on $GF(2^n)$: A new case for n divisible by 5.

Gold, R.
Maximal recursive sequences with 3-valued recursive cross-correlation functions.

Hollmann, H., and Xiang, Q.
A proof if the Welsh and Niho conjectures on crosscorrelation of binary sequences.

Kasami, T.
The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes.

Nyberg, K.

Differentially uniform mappings for cryptography.