Biochemical Tests in Clinical Medicine

Med 4 2010 / 11
Medical Biochemistry / Clinical Biochemistry / Chemical Pathology ? Use in Future

- Breadth
- Role in Medical Practice
- Diagnosis
- Prognosis
- Monitoring of Disease Progression
- Monitoring of Treatment
- Screening
- Reference Ranges
- Interpretation.
Introduction

Clinical Biochemistry

- Dissolved elements in body fluids
- Concentration and type e.g. glucose, electrolytes, hormones and significance of levels and interpretation.
- Accurate and precise laboratory measurements can aid in diagnosis and management of disease
Use of Biochemical Tests

- **Diagnosis**
 - **History** and **Physical Examination** of patient -- form **Differential Diagnosis** i.e. Hypothesis
 - Lab tests and Radiology to support or reject hypothesis. Limitations of tests must be appreciated
 - Interpretation must be carefully done in context of clinical details
Monitoring

- Monitor effectiveness of treatment glucose levels in diabetic patients in response to insulin treatment.
- Follow natural history of the disease.
- Development of complications and side effects of treatments.
- Toxicity / TDM.
Screening

- Detection of sub-clinical
- Neonatal screening PKU, CHT
- Criteria for same.
- Natural history known
- Acceptable tests no false negatives, few false positives
- Ease of treatment
- Positive outcome
Variation

Patient Variables:
- Age, gender, fasting, time of day, exercise, posture, need to document these.

Biological Variation

Pre-Analytical Variation
- Sample site, type of bottle
- Transportation to lab.
- Stability of analyte aging with time

Analytical Variation

Post Analytical Variation
- Interpretation
Prognosis

- Serial tests to identify progressive disease creatinine in renal failure
- Tests to identify risks of disease in future in certain groups cholesterol in “at risk families”
- Calculation of risk depends on epidemiological data
- Likely outcome of disease
Sampling

Test Request
- Clinician requests that analysis be conducted.

Requirements
- Name, DOB, Gender, Hos. No. MRN
- Ward, Address
- Requesting Clinician
- Hypothesis / Problem
- Tests sought, time of sampling, date
- Clinical details, Drugs or Therapy.
Sampling Issues.

- Patient Centred Factors
- Age
- Gender
- Posture
- Physiological State
- Pregnancy
- Exercise
- Fasting / Fed
- Time
Sampling contd.

- Plasma, serum
- Bottle and preservative, anti coagulant used
- Age of sample
- Time of sampling
- Guidance from lab on sample requirements
- Correct label
- Transport
- High risk spec.
Analysis

- Accuracy
- Precision
- Detection limits
- Specificity
- Cost Effective
- Rapid Turnaround Time
Reporting

- Analytical vs Biological Variation
- Reporting
- Interpretation
- Ward reporting by computer

Point of Care Testing

- Clinical Users
- Laboratory
- System Suppliers
- Medico-legal issues
- Guidelines - Governance
Errors

- Pre-analytical
- Analytical
- Post-analytical,
- Interpretation,
- Delays
- Wrong records
Interpretation

- Is Result Normal?
- Has it changed?
- Does it support the clinical hypothesis?
Does it Support the Hypothesis?

- Consistent and supports diagnosis
- Inconsistent needs explanation
- Error in sampling, patient labelling analysis, or reporting.
- Repeat test
- ? Diagnosis
- Statistical random event abnormal test can indicate no disease.
- Diagnostic Utility: Sensitivity, Specificity
Screening

- Natural history of disease
- Acceptable and reliable screening Tests, FP issues
- Therapy available
- Prevalence
- Entire population
- or “at risk groups”
Is It Different?

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Analytical variation</th>
<th>Biological variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>sodium</td>
<td>1.1 mmol/L</td>
<td>2.0 mmol/L</td>
</tr>
<tr>
<td>potassium</td>
<td>0.1 mmol/L</td>
<td>0.19 mmol/L</td>
</tr>
<tr>
<td>bicarbonate</td>
<td>0.5 mmol/L</td>
<td>1.3 mmol/L</td>
</tr>
<tr>
<td>urea</td>
<td>0.4 mmol/L</td>
<td>0.85 mmol/L</td>
</tr>
<tr>
<td>creatinine</td>
<td>5.0 μmol/L</td>
<td>4.1 μmol/L</td>
</tr>
<tr>
<td>calcium</td>
<td>0.04 mmol/L</td>
<td>0.04 mmol/L</td>
</tr>
<tr>
<td>phosphate</td>
<td>0.04 mmol/L</td>
<td>0.11 mmol/L</td>
</tr>
<tr>
<td>total protein</td>
<td>1.0 g/L</td>
<td>1.66 g/L</td>
</tr>
<tr>
<td>albumin</td>
<td>1.0 g/L</td>
<td>1.44 g/L</td>
</tr>
<tr>
<td>aspartate transaminase</td>
<td>6.0 IU/L</td>
<td>8.0 IU/L</td>
</tr>
<tr>
<td>alkaline phosphatase</td>
<td>4.0 IU/L</td>
<td>15.0 IU/L</td>
</tr>
</tbody>
</table>

\[SD^2 = \sqrt{SD_{anal}^2 + \sqrt{SD_{biol}^2}} \]
Gaussian distribution

number of subjects

-3SD -2SD mean +2SD +3SD

test result
1 Diagnostic Sensitivity

2 Diagnostic Specificity

1 Positive test result in presence of disease.

2 Negative test result with no disease.

Diagnostic Sensitivity = \frac{TP}{TP + FN}

Diagnostic Specificity = \frac{TN}{FP + TN}
A graph illustrates the relationship between the number of tests and various test results. The x-axis represents the test result, ranging from the reference range on the left to false positives and false negatives on the right. The y-axis represents the number of tests. The graph shows distributions of values in health and disease, with highlighted areas indicating false positives and false negatives.

Dr. John O’Mullane Consultant Clinical Biochemist / Lecturer

12/12/2010
Diagnostic Sensitivity = \(\frac{TP}{TP + FN} \)
The graph illustrates the relationship between the number of tests and the test result, with a diagnostic cut-off point. The x-axis represents the test result, with a peak indicating high specificity and another peak indicating low specificity. The y-axis represents the number of tests, with a peak indicating the optimal test result. The graph shows that as the test result approaches the diagnostic cut-off, the specificity increases, while sensitivity decreases.
Diagnostic Specificity = \frac{TN}{FP+TN}
ROC CURVES A, B, C

Dr. John O' Mullane Consultant
Clinical Biochemist / Lecturer
Test Efficiency and Predictive Values

\[
TE = \frac{TP + TN}{Total \ No. \ of \ Tests} \times 100
\]

\[
PV_{\text{Pos}} = \frac{TP}{TP + FP} \times 100
\]

\[
PV_{\text{Neg}} = \frac{TN}{TN + FN} \times 100
\]
Features of PD pos. and PD neg.

- Prevalence of disease in population.
- Low prevalence with less than 100% specificity high FP will result in low PV
- Screening with follow up testing should have a high PV neg.
Likelihood Ratios

- LR pos = Sens. / 1 – Spec.
- LR neg = Spec. / 1 - Sens.
AUDIT

- Patient Centred
- Quality and Continuously improving Service
- Efficient
- Review of Practice
- Changes to Improve service
- Measure Improvement
- Standards and Protocol Based
- Continuous Review of Practice
Evidence Based Clinical Biochemistry

- Experience and Intuition used to interpret
- Evidence Based Medicine ought to use outcomes as assessed by the PV, TE, LR and other concepts as outlined
- Will be case in future.