
The Cloud Personal Assistant for Providing
Services to Mobile Clients

Michael J. O’Sullivan, Dan Grigoras
Department of Computer Science

University College Cork, Cork, Ireland
{m.osullivan, grigoras}@cs.ucc.ie

Abstract - This paper introduces the original concept of a
cloud personal assistant, a cloud service that manages the
access of mobile clients to cloud services. The cloud
personal assistant works in the cloud on behalf of its
owner: it discovers services, invokes them, stores the
results and history, and delivers the results to the mobile
user immediately or when the user requests them.
Preliminary experimental results that demonstrate the
concept are included.

Keywords: mobile cloud, personal assistant, cloud
services

I. INTRODUCTION

The ever-increasing penetration rate of mobile
devices such as smartphones and tablets creates
opportunities for more flexible and adaptive computing
models and applications. Currently, mobile devices
allow their users to access remote services on the
move. At the same time, clouds provide services on
demand. The interaction between clouds and mobiles is
already seen as a path to follow for developing new
services and applications, as well as overcoming the
inherent computing limits of mobile devices. For
example, different components of a computing-
demanding application can be split between the cloud
and the mobile device, optimizing a variety of
objective functions [1]. Cloud event notification
services can alert subscribers of the status change in
some objects of interest (e.g., flights schedule) [2].
These applications show the potential of harnessing
cloud resources to the benefit of mobile clients (i.e.
mobile users).

According to Mark Beccue, “by 2014, mobile cloud
computing will become the leading mobile application

development and deployment strategy, displacing
today’s native and downloadable mobile applications”
[3]. Within this model, cloud services are always
available with quasi-unlimited resources, relieving the
user of administrative tasks. The user chooses the
service(s) and pays for what is used. Instead of hosting
downloaded apps, the mobile client can avail of
existing cloud services and use them as and when they
are required. However, this model is not perfect.

Mobile devices can suffer from several problems
that can have an adverse effect on their ability to
access web-based software and services. They can
suffer from a loss in signal, resulting in a disconnection
of the device from the mobile network. Wi-Fi is not
available everywhere, and where it is available in
public locations, a charge is normally required for
access. The battery on the device can die as well.

Cloud providers become more aware of the cloud
capabilities in terms of services that add value to the
model. However, the number of services and
subscribers can get to a level where service governance
technology is required to manage the system
complexity effectively [4].

These aspects require middleware services that will
pervasively mediate the access of mobile clients to
cloud services and be able to safely and effectively
manage the increasing number of users and services.

Our research goal is to go further on the path of
integrating clouds and mobiles towards a common,
pervasive service space. We are motivated by three
key challenges in the areas of cloud and mobile
computing: discovery of and access to appropriate
services in the clouds (SaaS), the effective provision of
services to mobiles in all situations, including
disconnection, and personal mobile services
management. Our original solution, presented in this
paper, is a new cloud service called the Cloud Personal

2013 IEEE Seventh International Symposium on Service-Oriented System Engineering

978-0-7695-4944-6/12 $26.00 © 2012 IEEE

DOI 10.1109/SOSE.2013.39

477

Assistant (CPA) that works on behalf of its user for
providing the required cloud services, if they exist –
every subscribed user will be allocated an instance of a
CPA. With CPA, the responsibility for discovering an
appropriate service, invoking it, and getting the result
has moved from a client application into the cloud
itself. Once the task information has been sent to the
cloud assistant from the mobile client, any interruption
that occurs on the mobile device has no bearing on the
outcome of the service for the task. If the signal is lost,
or the battery dies, the task information, invocation and
result data are safely in the cloud.

This paper starts with a review of similar work in
Section 2. Then, the concept and architecture of the
CPA is presented in Section 3. Section 4 gives
experimental results, and Section 5 concludes this
paper.

II. RELATED WORK

Various approaches have been taken to utilize the

benefits cloud infrastructure can offer to mobile
devices.

Cloudlets are a form of computing infrastructure
located near the mobile device proposed by
Satyanarayanan et al [5]. The basis for cloudlets is the
need to run applications on mobile devices that operate
under near real-time constraints; latency must therefore
be minimal. Cloudlet infrastructure is self-managing
and can be deployed in public area in a secure
enclosure. Generally, a cloudlet will only be one Wi-Fi
hop away from the mobile device. The cloudlet runs a
minimal virtual machine for operating systems, which
can be combined with a virtual machine overlay
located on a user’s mobile device, containing a user’s
custom applications and settings. The cloudlet can then
carry out some task work for the mobile device user,
while sending other work to the cloud. Our approach
by having the personal assistant discover and use
services asynchronously will remove the need for users
to obtain and maintain applications themselves on
virtual machines. In addition, the services can be
optimised to take advantage of awareness of user
context from the mobile device resources such as
sensors, which VM’s such as Windows 7 are not
designed to use.

Code partition and offload is another explored
topic. Cuervo et al [7] developed a system called
MAUI, which can offload execution of parts of an
application, onto cloud infrastructure. Developers
annotate suitable application methods as Remoteable,
which are then considered as candidates for offloading
at runtime. Chun et al [8] implemented a very similar

system to MAUI, known as CloneCloud. It functions in
the same way as MAUI, by offloading execution to the
cloud. Here, a clone of the device runs in the cloud.
This gives the advantage that a method offloaded to the
cloud can call native methods, even though native
methods themselves, like MAUI, cannot be offloaded.
CloneCloud does not require the developer to annotate
or modify their application in any way. Both solutions
profile applications against the current network state,
the energy consumption characteristics of the device
and application, required resources, and in the case of
CloneCloud, time required for execution. In both cases
an optimization solver decides at runtime should a
method be sent to the cloud if cloud based execution
will minimize the objective function. Our approach
will save energy and time overhead by not requiring
any partitioning, offloading of application code or
profiling, as we are using cloud based services. The
assistant needs only be signaled to carry out work,
possibly using history data, so no consideration of
transferring large amounts of data such as application
code and data in the above approaches is required. Our
approach will also store service results in the cloud
until the device is ready to receive them, unlike the
above approaches where cloud execution state is lost if
disconnection occurs.

Some approaches have attempted to relieve the need
to use WAN or remote cloud infrastructure, and instead
use information from other devices in close proximity.
These devices can create an ad-hoc mobile cloud. One
such approach is by Huerta-Canepa and Lee [9], which
they call a virtual cloud provider. The idea behind this
approach is that users who share the same environment
may be interested in performing the same tasks. The
example used is two mobile users attempting to
translate a Korean text description of a museum piece.
Due to roaming charges, the user does not want to
access cloud services, but the other mobile user already
has this information on the device, so an ad-hoc
network is created between the devices to obtain the
information. The implementation involves interception
of application calls to cloud infrastructure, and
modifying it to use its virtual cloud provider. It also
determines what devices in proximity are stable (not
moving away out of the vicinity), and resource
availability to determine if a task needs to be offloaded
to another device. Using a cloud assistant approach, the
mobile user would not need to spend time and roaming
usage searching for a service to translate and getting a
response, normally through a web browser with all the
other unnecessary larger elements on web pages such
as images. The cloud assistant, when given this task,
works asynchronously, not requiring a continuous
costly connection to the device, and can simply send

478

back the required information with no overhead when
the task is complete.

The partitioning of mobile applications into
components and distributing them to other nearby
devices is another explored topic. Alfredo is a system
by Giurgiu et al [1] which partitions applications into
components and distributes them among the nearby
devices, in various configurations to minimize or
maximize an objective cost function, such as energy
cost, or throughput. They conclude that computation
intensive components could be distributed, leaving
only UI components on the device, where the role of
the device becomes a viewer. This is similar to a thin
client remote display approach by Simoens et al [12]
who study the role of mobile devices as thin client
viewers to remote applications. A modification to the
cloudlet approach by Verbelen et al [6] is similar to
Alfredo in that it modifies the cloudlet concept to be a
collection of devices in the proximity. Their system
also partitions applications into components and
distributes them among the devices. Our approach
again removes any profiling overhead, and applications
do not have to be created or modified to a distributable
component design. As already outlined with respect to
cloudlets, our design can benefit from the resources on
the device for context awareness use with cloud
services, whereas with a thin client viewer approach,
the device is just used to take UI input from the user. If
the remote application is running on a VM with an OS
like Windows 7, the thin client viewer approach also
suffers from the same drawback as cloudlets as the OS
is not optimised for the capabilities of mobile devices.

III. THE PERSONAL ASSISTANT MODEL

A. The Cloud Personal Assistant Concept

The main concept we propose for the mobile cloud

is that of a personal assistant that works in the cloud on
behalf of its owner. The main benefit is that CPA is
always running in the cloud, receives from its owner
the set of tasks to execute, discovers the necessary
cloud services, invokes them and then delivers the
results. There is no need for a permanent connection
between the mobile and the cloud, and the results can
be delivered when the mobile user needs them.

When a mobile user subscribes to the system, the
CPA management service creates a CPA instance and
assigns it together with other cloud resources (storage,
CPU) to that user – see figure 1.

Fig 1. The mobile client subscribes and has allocated an

instance of a Cloud Personal Assistant. UMAS - the cloud
User Management/Authentication service; CPA-MS – the
management of CPA service.

An authentication key is returned to the user as well

but the security aspects are not discussed in this paper.
The newly created CPA instance will persist in the

cloud as long as the user is subscribed, being either
active or dormant.

CPA is given information by the user on some task
he/she is interested in carrying out – see figure 2. This
information can be the type of service they are looking
for, and some parameters related to the task. The
information can be given to the cloud assistant from a
client application running on the mobile device. The
cloud assistant, which “lives” in the cloud, will take
this information, search for and discover a service in
the cloud which can carry out this task for the user.
Once a service has been found, the cloud assistant will
invoke the service, passing it the parameters that the
user has provided. The cloud assistant will then wait
for a result from the service. Once the result has been
handed back to the cloud assistant, it is stored, and the
user is then notified that the result is ready. The result
of the service invocation can be viewed, used
immediately or at some moment later in time.

One benefit of this model is that once the user has
given a task description to the cloud assistant, even if
the battery dies or the signal is lost, the task execution
and the details associated with it are safe, as the
responsibility for the discovery and invocation of the
services is in the cloud, and no longer with the user.
This approach also has added benefits.
Computationally expensive, intense, long-running
tasks, free the user’s client software from having to be
left on and running in an uninterrupted state on mobile
devices or desktop PCs. It can take advantage of the

CPA-MS

CPA

UMAS

479

Fig 2. The Cloud Personal Assistant looks up the

Directory and then invokes services A, B and C.

excessive resources of the cloud that may be lacking on
the mobile device. The user does not need to search
for, download, and install software or service client
applications on their device.

The difficulties of this approach include the
heterogeneity of software and services available, and
selecting the right one for the task based on the users
inputs. Different services take in and return different
types of data. Depending on the user’s location and the
quality of the network they are connected to, the
latency involved in contacting the cloud assistant must
be taken into account. Ideally, the cloud assistant and
its data should be as close as possible in the cloud to an
access point near the user’s location.

B. System Architecture

The mobile cloud middleware based on the concept

of CPA is divided up into three tiers, with the original
intent of deploying the application for each tier onto a
cloud based instance – the user tier, the task tier, and
the service tier.

The main benefit to this approach is that the system
is modular, in that changes to one should not affect the
other. This approach also promotes loose coupling,
which is very important in large software systems.
Database storage is used, to keep data persistent.

The user tier is responsible for user registration,
login/logout, and presenting the cloud assistant and
related tasks to the user. When a user registers, an
entry is made for them in a User table in the database,
storing all their details. Upon registration, a cloud
assistant instance is created for the user. This is stored

in the cloud assistant table in the database. The cloud
assistant maintains a reference to its owning user, and
lists of current tasks in process, and previous tasks,
known as history. The Tasks table contains the tasks
and pointers to their parent cloud assistant. Users can
create new tasks to be added to the cloud assistant’s
current task list for execution. A user can log in at any
time to check has a task finished execution. The user
can also view all previous executed tasks. Any new
task the user creates is passed to the task tier.

Tasks are passed into the task tier from the front
end user tier over a queue. A new task is stored in the
Tasks table in the database for history. When a task is
passed in, the task handler class will look up the
registry for the appropriate service. When one is found,
it will create a service access client. This client will
then be responsible for contacting the required service,
passing it the information, and waiting for completion
and results to be handed back from the service.

When the client has the result, it will pass this
result back to the task handler, which will update the
task as complete in the database. The result may also
have to be stored, or it could be passed back over a
queue to the cloud assistant.

The services tier is just an abstraction of a container
containing the cloud services. Services here will need
to register themselves with the registry, and receive
tasks from task tier. To handle load and for scaling
purposes, they may need to create separate threads of
execution for each task a service receives. A thread
pool could be utilized here if required.

Finally, the system uses a discovery service that
allows clients to discover appropriate cloud services.

C. System Implementation

Three cloud providers were evaluated, Amazon

Web Services, Microsoft Azure, and Google
AppEngine. Amazon was the selected choice as it
provides support for running the Tomcat servlet
container to deploy Java web-based enterprise
applications, by uploading the WAR files to the
container. It also supports MySQL databases. To
contrast, Azure does not readily provide Java support
“out-of-the-box”, in that it does not readily run a Java
Virtual Machine (JVM) or Tomcat (they must be
packaged and deployed with the application). It uses
Microsoft SQL Server. The Google AppEngine only
recently provided support for Java and it does not use a
MySQL based database solution, rather a NoSQL
datastore.

 CPA

Directory

SVR A

SVR B

SVR C

480

The following Amazon Web Services features were
used:

• EC2 instances running application tiers;
• RDS which provided MySQL based databases;
• SQS which provided the queue in the first

design;
• CloudFront which provided a Load Balancer;
• ElasticBeanstalk which provided automatic

application management.

The Task Handler
The task handler is a class which when handed a

task description by the cloud assistant, will look up a
service in the registry, and create a service client for
executing the task. In our first implementation a queue
was used to pass task data between the cloud assistant
and the task handler on the task tier. Due to queue
payload restrictions and time overhead, our second and
final implementation removed the queue, and
developed the task tier as a component of the cloud
assistant, so they could communicate directly. The
cloud assistant creates a new thread of execution for a
new instance of the task handler for each new task
received, so several tasks can run concurrently.

When handed a task, the task handler examines the
task to check if a WSDL file URL is already associated
with that task. If there is, then the task or a similar task
has been executed before, so the entire registry lookup
process is skipped for performance. If no previous
WSDL file URL is associated with the task, then the
task handler uses a library of Apache Scout code, to
lookup the jUDDI registry, with the task type
information associated with the task. The library
encapsulates SOAP level communication over HTTP.
The search will return a list of services that have a
service name that approximately matches the task type
entered. The first result is chosen as the service. In
future versions, service attribute negotiation should be
considered, but this is beyond the scope of the jUDDI
service result implementation.

The task handler extracts the WSDL file URL from
the service result and stores it with the task. The task
handler will now create a Service Client, which will be
responsible for invoking the service and fetching a
result. Once the result has been passed back from the
Service Client, the task handler forwards it back to the
Cloud Assistant for storage and user notification.

If no service was found in the registry that is
similar in name to the provided service type of the task,
a notification message indicating no service found is
sent back to the Cloud Assistant.

The Service Client

The service client is responsible for creating a
dynamic client for the remote service, given the WSDL
file for the remote service from the task handler. It
chooses the relevant operation exposed by the service
that matches the operation associated with the task the
user submitted. A limitation of the framework is that
operations cannot be searched. If no operation is found
in the dynamic client created from the WSDL, a
notification message is returned to the task handler to
indicate no service was found. The name must
explicitly match what the user provided as the
operation name. It will then wrap up the users input
parameters and invoke the service with those
parameters. When the result is returned, it is passed
back to the task handler.

IV. EXPERIMENTAL RESULTS

The proof-of-concept experiments were carried out

on an Amazon EC2 compute instance, running Ubuntu
Linux 11.10. The instance size is t1.micro, which
includes 613MB RAM, and 2 EC2 Compute Units [10-
11].

The following time parameters detail the
performance measurements taken in testing, measured
in time (seconds) to execute the operations described.
The testing results were gathered using timing logging
statements placed at important points in the code.

Td = Time for service discovery. In this test, this
involves checking if the task handed to the task handler
already has a WSDL URL associated with it, in which
case it is a re-run of a previous task. If a former WSDL
URL is not found, the jUDDI registry is then queried,
and a list of found services returned. The list of
services returned is iterated over to pick the service.
Only one service is returned from the registry.

Tp = Time for preparation (dynamic client creation,
parameter wrapping)

Ti = Time for service invocation (from the time of
method call to result returned).

Tt = Total time for discovery, preparation and service
invocation. Note that this measurement was not
calculated by simply summing Td, Tp, and Ti; it was
calculated using different timing logging statements to
the other time measurements, placed at the start and
end of the task handling process. It does not take into
account the time taken for new task processing on the

481

user tier, e.g. creating new task objects and saving
them with the cloud assistant in the database,
authenticating the user, and sending confirmation
responses to the client.

The first set of experiments involved a cloud
arithmetic service that is invoked for the first time. The
results are shown in table 1. The large difference
between the results of the first run and subsequent runs
may be explained as follows: before these tests were
run, the server instance was restarted. After the restart,
on the first run, the WSDL file was fetched, and the
dynamic client was compiled, with its compiled class
files stored in a temporary directory. It is possible after
the first run, the WSDL file may have been cached,
and the dynamic client files were not deleted from the
temporary directory as the server was not restarted, and
therefore may not have been recompiled.

The second test is similar to the previous test
except that it was re-run from a previous task. The
results are shown in table 2. Therefore the step of
querying the registry and fetching the WSDL file are
skipped, as the previous task which the new tasks are
run from already have a WSDL file URL associated
with it. Therefore Td is not measured, although the
check if the task already has a WSDL file URL
associated with it will still take place, and return true.
For consistency, the server instance is again restarted
before the tests are run. Again, having restarted the
instance server before the tests resulted in a longer
amount of time required for the dynamic client class
compilation in the first run. The time reduction for
invoking services already discovered is clearly lower
than the time taken when a new service must be
discovered. The idea in this is that users will re-use
services they have already discovered far more often
than searching for new ones each time they need to re-
run a task or carry out a similar task.

The time taken to communicate with the cloud
assistant from the mobile device was measured. This
measurement can vary greatly because the more task
data sent (e.g. the sending of a new task and its

Table 1. Task: arithmetic Service, no previous

service known (e.g. New Task created on client)
Run

Number
Td (s) Tp (s) Ti (s) Tt (s)

Run 1 2.79 2.59 0.001 5.38
Run 2 0.371 0.195 0.001 0.568
Run 3 0.392 0.198 0.001 0.59
Run 4 0.359 0.184 0.001 0.543
Run 5 0.403 0.179 0.001 0.584

Average 0.863 0.669 0.001 1.533

Table 2. Task: arithmetic Service, previous service
known (e.g. Re-run of previous task from client, no
new parameters specified)

Run
Number

Tp (s) Ti (s) Tt (s)

Run 1 2.397 0.001 2.399
Run 2 0.193 0.001 0.194
Run 3 0.19 0.001 0.19
Run 4 0.189 0.001 0.191
Run 5 0.186 0.001 0.187

Average 0.631 0.001 0.6322

description data versus simply signaling to the cloud
assistant to re-run a task - simply sending the task Id to
the cloud assistant), the longer the communication may
take.

The client mobile device used for testing is a
Samsung Galaxy S2, running the Google Android OS
version 2.3.4 (Gingerbread). The network provider is
Vodafone Ireland. Two tests took place,
communication over the HSPA+ connection on the
device, and over the Wi-Fi network connection to
Eircom (ISP) Broadband, with a measured download
rate of 2272 kbps, and a measured upload rate of 512
kbps. The router providing the modem and Wi-Fi
connection is a Netgear N300 Wireless Dual Band
ADSL2+ Modem Router (model DGND3300v2) using
wireless mode G. To take the measurement, timing
logging code was inserted just before and after the
HTTP connection is made with the request to the cloud
assistant application and the response being received. It
does not take into account any of the service work in
the application such as JSON parsing, building the
HTTP Request, and the sending of user entered data
from the activities to the service. From the user tier
perspective on the cloud application, this test shows
the time taken for what was not measured in the
service discovery and invocation tests, namely the user
tier processing of new tasks, associating them with the
cloud assistant, insertion into the database and
authentication of the user. The response is sent to the
client only after these tasks processes have been
completed. Similar to the previous tests, the time was
measured for sending new tasks and re-run tasks to the
cloud assistant over the Wi-Fi and 3G networks from
the mobile device. The results are shown in tables 3-6.
An important factor on timing is the location of the
server and the client.

The client device was located in Cork, Ireland. The
cloud application running on Amazon’s AWS instance
servers, and the RDS database servers, were located in
the Amazon US-East data centre, located in Northern
Virginia, USA.

482

Table 3. Time taken to send new task to cloud
assistant from mobile device client application over
residential Wi-Fi network and receive confirmation
response. Task was a new task, as in table 1.

Run Time (s)
Run 1 1.233
Run 2 1.266
Run 3 1.149
Run 4 1.248
Run 5 1.155

Average 1.210

Table 4. Time taken to send a re-run task to cloud
assistant from mobile device client application over
residential Wi-Fi network and receive confirmation
response. Task was a previous task, as in table 2, re-run
from client, no new parameters specified.

Run Time (s)
Run 1 1.178
Run 2 1.09
Run 3 1.116
Run 4 0.981
Run 5 1.108

Average 1.095

Table 5. Time taken to send new task to cloud
assistant from mobile device client application over
network provider HSPA+ connection and receive
confirmation response. Task was a new task, as in table
1.

Run Time (s)
Run 1 2.116
Run 2 1.976
Run 3 1.069
Run 4 1.056
Run 5 1.465

Average 1.536

Table 6. Time taken to send a re-run task to cloud
assistant from mobile device client application network
provider HSPA+ connection and receive confirmation
response. Task was a previous task, as in table 2, re-run
from client, no new parameters specified.

Run Time (s)
Run 1 1.77
Run 2 1.432
Run 3 1.096
Run 4 1.29
Run 5 1.589

Average 1.435

After the arithmetic service task requests were sent

to the cloud assistant, the mobile device client
application would be closed down. When the cloud
assistant obtains the results from the service, it is
stored in the task history. An email is sent to the user
informing of the completed task. At this point or at a
future point in time, the mobile client application can
be opened to retrieve the result from the cloud
assistant. This shows that execution of the task and
saving the result is possible even when the device is
disconnected from a network.

V. CONCLUSIONS

In this paper, we introduced the concept of the

cloud personal assistant as the main component of a
new mobile cloud middleware system. The proposed
cloud assistant solution is based on moving the
responsibility of discovering and utilizing services into
the cloud on user’s behalf, so if any interruption
occurred on the mobile device, the progress of
executing some task would be safe in the cloud.

An implementation was designed to demonstrate
the concept. It consists of three primary tiers, a user
tier, a task tier, and a service tier. A fourth tier is the
registry of services. The user tier maintained user and
task information, and can send and receive data to the
user’s client. The cloud assistant “lives” in the cloud. It
uses the task tier to lookup services in a registry. It can
then invoke services running on the services tier, where
running sample services created for this project are
deployed and running, including arithmetic, AWS S3
and AWS RDS services. The result returned from the
service that was invoked is stored by the cloud
assistant, and the user notified of the completed tasks.
The user can view the result at any future moment in
time.

The performance of the application was measured
and found to be relatively quick, never taking more
than three seconds at most to complete any process
involved in the server and client applications. Under
normal circumstances operations never reached a two
second duration. The difference in timing over the
tested Wi-Fi network and HSDA+ network were
negligible.

Several limiting factors are present that will be
addressed in the future. The lack of flexibility in
searching for services is a restraining factor on the
potential of this implementation, such as service and
operation names. Services cannot be described in such
a way that would allow for negotiation between
services and the cloud assistant in which one service of
many possible suitable services should be selected. The

483

difficulties of the heterogeneous services environment
make it problematic to deal with the multitude of
different inputs and outputs from services.

ACKNOWLEDGMENT
The PhD research of Michael J. O’Sullivan is

funded by the Embark Initiative of the Irish Research
Council.

REFERENCES

[1] I. Giurgiu, O. Riva, D. Juric, I. Krivulev, and G. Alonso,
“Calling the cloud: Enabling mobile phones as interfaces to
cloud applications”, Middleware 2009: 83-102.
[2] K. Farkas, O. Wellnitz, M. Dick, X. Gu, M. Busse, W.
Effelsberg, Y. Rebahi, D. Sisalem, D. Grigoras, K.
Stefanidis, D. N. Serpanos, “Real-time service provisioning
for mobile and wireless networks”, Computer
Communication Journal, March 2006,
[3]ABI Research, “Mobile Cloud Computing Subscribers to
Total Nearly One Billion by 2014”,
http://www.abiresearch.com/press/1484-
Mobile+Cloud+Computing+Subscribers+to+Total+Nearly+
One+Billion+by+2014.
[4] D. Linthicum, “Where SOA meets Cloud. 3 SOA/Cloud
Trends to Watch in 2011”,
http://www.ebizq.net/blogs/cloudsoa/2010/12/3-soacloud-
trends-to-watch-in-2011.php.
[5] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies. The
Case for VM-based Cloudlets in Mobile Computing. IEEE
Pervasive Computing, Volume 8 Issue 4, October 2009, pp
14-23.
 [6] T. Verbelen, P. Simoens, F. De Turck, B. Dhoedt.
Cloudlets: Bringing the Cloud to the Mobile User. MCS ’12
Proceedings of the third ACM workshop on Mobile cloud
computing and services, pp 29-36.
[7] E. Cuervo, A. Balasubramanian, DK. Cho, A. Wolman,
S. Saroiu, R. Chandra, P. Bahl. MAUI: Making Smartphones
Last Longer with Code Offload. MobiSys '10: Proceedings of
the 8th International Conference on Mobile Systems,
Applications, and Services, pp 49-62.
[8] BG. Chun, S. Ihm, P. Maniatis, M. Naik, A. Patti.
CloneCloud: Elastic Execution between Mobile Device and
Cloud. EuroSys ‘11 Proceedings of the Sixth Conference on
Computer Systems, pp 301-314.
[9] G. Huerta-Canepa, D. Lee. A Virtual Cloud Computing
Provider for Mobile Devices. MCS ’10 Proceedings of the
1st ACM Workshop on Mobile Cloud Computing & Services:
Social Networks and Beyond, pp 6:1-6:5.
[10] Amazon Elastic Compute Cloud AWS Documentation –
“Instance Families and Types” -
http://docs.amazonwebservices.com/AWSEC2/latest/UserGu
ide/instance-types.html
[11] Amazon Elastic Compute Cloud AWS Documentation –
“Micro Instances”-
http://docs.amazonwebservices.com/AWSEC2/latest/UserGu
ide/concepts_micro_instances.html

[12] P. Simoens, F. De Turck, B. Dhoedt, P. Demeester.
Remote Display Solutions for Mobile Cloud Computing,
Computer, 2011, 44, (8), pp. 46-53

484

