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Abstract—Wireless Sensor Networks (WSNs) increasingly enable 

applications and services to interact with the physical world. Such 
services may be located across the Internet from the sensing network. 
Cloud services and big data approaches may be used to store and 
analyse this data to improve scalability and availability, which will be 
required for the billions of devices envisaged in the Internet of Things 
(IoT). The potential of WSNs is limited by the relatively low number 
deployed and the difficulties imposed by their heterogeneous nature 
and limited (or proprietary) development environments and interfaces. 
This paper proposes a set of requirements for achieving a pervasive, 
integrated information system of WSNs and associated services. It 
also presents an architecture which is termed holistic as it considers 
the flow of the data from sensors through to services. The 
architecture provides a set of abstractions for the different types of 
sensors and services. It has been designed for implementation on a 
resource constrained node and to be extensible to server 
environments. This paper presents a ‘C’ implementation of the core 
architecture, including services on Linux and Contiki (using the 
Constrained Application Protocol (CoAP)) and a Linux service to 
integrate with the Hadoop HBase datastore.  

Index Terms—Wireless Sensor Networks, Tuple Space, 
Information Model, Protocols, Cloud Computing, Big Data 

I. INTRODUCTION  
Wireless Sensor Networks (WSNs) are being enabled by 

the increasing availability of sensors and advances in wireless 
technologies, hardware and the use of IP for connecting 
resource constrained devices. The use of micro IP stacks (and 
IPv6 over Low power Wireless Personal Access Networks 
(6LowPAN) [1] has enabled constrained devices to connect to 
the Internet in a so called “Internet of Things” (IoT). 
Definitions of IoT generally share the idea that it relates to the 
integration of the physical world with the virtual world of the 
Internet [2]. IoT is characterised by an interconnected set of 
individually addressed and constrained (possibly autonomous) 
devices in a distributed system, with sensing/active devices for 
physical phenomena, data collection, and applications using 
sensing, computation and actuation. There could potentially be 
billions of such devices connected across the Internet with  
predictions of 50 to 100 billion devices being connected to the 
Internet by 2020 [3]. 

WSNs have a (possibly large) number of devices with 
sensing capabilities, limited processing capability and wireless 
connectivity (allowing nodes to be deployed close to the 
phenomenon being observed) to other sensor or gateway 
nodes. WSN nodes exist to sense a particular entity, collect 

(and possibly parse or aggregate) the data and send the data to 
one or more destinations and ultimately to an application 
across a range of areas, e.g. environmental monitoring, 
surveillance and healthcare. Such deployments are usually 
dedicated and proprietary or specialized to optimise one 
particular aspect such as lifetime. 

The availability of increased storage and processing power 
at a lower cost with greater bandwidth has enabled a range of 
Cloud Computing services. In terms of IoT, this allows more 
sources of data to be collected and for the data to be held for a 
longer time and to be processed by powerful cloud based 
applications and Big Data techniques, e.g. HBase and 
MapReduce. Big Data can be characterised by the 3 ‘Vs of 
Volume (size of the data), Variety (range in type and source of 
data) and Velocity (frequency of data generation) [4].  

The constrained nature of WSN nodes in terms of 
processing power, memory and energy consumption makes it 
difficult to enable WSNs to be more easily deployed, 
developed and integrated with new Internet based services. A 
key challenge is to enable WSNs to become extensions of the 
Internet infrastructure, to take full advantage of Cloud and Big 
Data services [5] and be universally available, rather than 
isolated and relatively small islands of sensor networks. To 
address this challenge, this paper presents a set of architectural 
requirements, a resulting layered architecture and abstractions 
for the data exchange roles taken by services on WSN nodes 
and in the Cloud, supported by a novel protocol. It also 
evaluates an initial implementation of the architecture. 

The remainder of this paper is organised as follows. We 
discuss prior work in section II and present a set of 
architectural requirements to meet the challenge above in 
Section III. Section IV presents the architecture, including its 
service abstractions, object library and introduces the message 
protocol. Sections V and VI present an initial implementation 
and evaluation of the architecture and its HBase integration. 
The paper concludes in Section VI. 

II. EXISTING AND EMERGING FRAMEWORKS 
This section outlines the current frameworks and 

approaches used in the Internet of Things, WSN software, 
Cloud Integration and Big Data. A recent survey shows that 
only 13 of 28 WSN systems surveyed have actually been 
implemented on hardware rather than run in simulators [6] and 
that there is still an absence of broad abstractions, which we 
propose later. Hence applications are often bound to a 
particular WSN technology and not easily portable as the 

2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

978-0-7695-4996-5/13 $26.00 © 2013 IEEE

DOI 10.1109/CCGrid.2013.100

546



application developer must have detailed knowledge of each 
underlying technology.  

A. Constrained Application Protocol and IoT 
The Constrained Application Protocol (CoAP) has been 
developed by the Internet Engineering Task Force (IETF) and 
is targeted at the IoT area [7]. It is a standard for a specialized 
web transfer protocol for constrained nodes and constrained 
(e.g. low-power, lossy) networks. It is built on top of UDP and 
uses web concepts such as URIs and media formats for easy 
integration of such constrained environments into HTTP and it 
addresses issues such as the overhead of HTTP headers, XML 
parsing, TCP over lossy links and the handling of node duty 
cycles. It uses the REST architectural style [8], where 
resources (such as sensors) are represented in a number of 
formats and accessed by their Universal Resource Identifier 
(URI) using a limited set of verbs, such as GET, POST, PUT, 
DELETE in HTTP. The decoupled nature of this style 
facilitates application development and scalability.  

B. Cloud Integration Approaches 
The NIST has proposed three main Cloud service 

types/models of Infrastructure as a Service (IaaS), Platform as 
a Service (PaaS), and Software as a Service (SaaS) [10].  
Sensing as a Service has been proposed, with elements of an 
IAAS solution [5], but more often as a PAAS. Commercial 
offerings such as cosm.com allow users to upload their sensor 
data using a defined set of attributes. 

Sensor-Cloud [11] uses SensorML to describe sensor 
metadata and manages sensors via the cloud, rather than 
providing their data as a service. The OpenIoT [12] 
middleware platform comprises an IoTCloudController 
(provides SOAP Web services for sensor registration, 
discovery, subscription and control), a JMS style Message 
Broker, Sensors (with a module to publish to OpenIoT) and 
Clients (which subscribe to or consume sensor data). Another 
approach uses a data channel based on Java FileInputStream(), 
FileOutputStream() to hide the underlying network protocols 
and a Sensor Server on the wireless network’s master node to 
filter sensor data and to deliver it to cloud services [13]. This  
approach is simple, but limited in its flexibility. Another 
integration approach uses a content-based pub-sub model for 
event publications and subscriptions for asynchronous data 
exchange, requiring a gateway at the edge of the cloud to 
receive sensor data, a Pub/Sub Broker to process and deliver 
events to registered users and a range of components to 
support SaaS applications [14]. 

These middleware approaches to cloud integration require 
specific application gateways/proxies at the edge of each 
wireless network and their own sensor data definition. 

C. Big Data 
The use of Big Data is well established commercially to 

analyse large amounts of data in order to make timely 
decisions, e.g. in retail for analysing consumer behaviour and 
preferences. This paper illustrates how seamlessly our holistic 
architecture can accommodate the use of Apache HBase to 
store sensor data. HBase uses the Hadoop Distributed File 

System (HDFS) and is a distributed, versioned, column-
oriented, store, derived from Google BigTable. HBase stores 
data into tables, rows and cells. Rows are sorted by row key 
and each cell in a table is specified by a row key, column key 
and a version, with the content held as an un-interpreted array 
of bytes. We consider HBase suitable for WSN data not just 
because it is scalable and can store large amounts of replicated 
data, but because of its key value nature and flexible data 
access. The data access is provided by a rapid query using a 
get with a row key and a scan using an arbitrary combination 
of selected column family names, qualifier names, timestamp, 
and cell values. It also provides sparse tables, which is 
appropriate for cases where not all WSN nodes can provide all 
the columns defined. Columns belong to a particular column 
family and are identified by a qualifier. Column families must 
be declared at schema definition time, but individual columns 
can be added to a family at run time. The associated 
MapReduce model has been shown to be appropriate for 
processing sensor data [15].  

D. WSN Software Frameworks 
Programming WSN applications and nodes is time-

consuming, error-prone and difficult requiring low level 
hardware and network knowledge, often using a vendor 
specific environment for particular hardware. Software 
Engineering concepts and higher level abstractions are required 
to improve the development process and ease the integration 
with other systems in order for wider deployment of WSNs [16] 
as part of the seamless, context aware environments envisaged 
in pervasive computing [17], where applications/services are 
interested in the sensed information,  not the underlying 
hardware or wireless network. Special purpose operating 
systems like Contiki are used on more constrained nodes, while 
more powerful hardware platforms such as SUNSPOT have 
high level language support such as Java, but at the cost of 
more expensive hardware and higher power consumption. 
TinyDB [18] essentially considers the WSN as a distributed 
database and can be considered limited by its table based 
approach and relational queries, especially in terms of handling 
events. Middleware approaches such as Sensation[19] treat the 
sensor network as a whole as an information source similar to a 
database, with its middleware acting as an integration layer 
between applications and networks and a proxy with a prioi 
configuration for particular WSNs to hide device and network 
specifics. Agent based middleware requires particular node 
computational capability and the energy used by traffic for 
code mobility reduces node lifetime [20]. A data-centric 
approach such as directed diffusion has the potential of 
significant energy savings and relatively high performance, but 
it is tightly coupled to a query on demand data model where 
applications can accept aggregated data [21]. TeenyLIME [22] 
is another higher level approach, which is based on a shared 
memory space (tuple space), derived from Linda’s [23] limited 
number of simple operations to insert, read, and withdraw 
tuples from a tuple space. TeenyLIME has been deployed in a 
real-world application and shown the usefulness of a tuple 
space approach in WSNs [24], but a node’s local tuple space is 
only shared with the nodes within communication range. 
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III. ARCHITECTURE REQUIREMENTS 
The objective of our architecture is to simplify the 

development, configuration and deployment issues to enable 
ubiquity of WSNs, easier interfacing to other networks and the 
easier development of generic and more powerful applications 
using sensor data. To meet this objective, we define the 
following architecture requirements:   

1. It must be independent of particular node hardware, 
must handle a range of node functional capabilities and 
provide an extensible layered system able to handle the 
radio channel and environmental factors, within the 
required limits of power consumption. 

2. It must provide abstractions for the basic operations 
required of a sensor node and the services using it, 
which map easily to a range of heterogeneous devices 
and higher level services.   

3. It must clearly define the possible roles of nodes and 
any protocols must be sufficiently simple for low 
capability devices to participate. It is unreasonable to 
demand that all nodes have equal functionality, as this 
limits the ability to handle more powerful nodes. 
Nodes will, however, require a minimum level of 
functionality, e.g. forwarding data to a neighbour. 

4. It must provide a consistent means to exchange sensor 
information independent of the underlying technology 
and provide specific support for the modelling of 
sensor data to allow integration into higher level 
systems. A sensor node should be able to advise other 
nodes and services of its sensing and platform 
capabilities.  

5. It must be able to handle small, static networks and 
allow the system to adapt as the network 
grows/changes or encounters other networks and 
support  applications discovering and collaborating 
without a centralized coordination facility. 

The need for a more holistic approach can be seen in a 
remote healthcare monitoring scenario, where sensors connect 
to a central gateway in a house over a wireless network. The 
gateway is responsible for storing the data locally and 
uploading data to a central health monitoring site, possibly via 
a central gateway/proxy and cloud based services to analyse the 
data [25]. Such solutions often require sensor application and 
proxy design to handle data integration, network integration 
and security concerns. This lack of unified abstractions will 
become more problematic in this scenario as Wireless Body 
Area Networks are deployed, e.g. IEEE802.15.6 which allows 
up to 64 nodes on a body to connect via a central co-ordinator 
node. When large numbers of WSNs/BANs are deployed, 
treating these networks of nodes as peripheral devices and 
connecting them to the Internet via proxies or sinks will limit 
performance and scalability [26].  

IV. THE HOLISTIC ARCHITECTURE  
This section proposes an architecture to meet the 

requirements from section II. The key principle underlying it is 
that all WSNs are primarily about delivering sensed data/events 
to one or more applications (periodically, on-demand or 

asynchronously) or commands to actuators from applications. 
The architecture meets the requirements in section II by using a 
number of service abstractions to model the different roles a 
service can perform, defined software layers and an object 
infrastructure to support information models. It uses a simple 
protocol based on Peer to Peer (P2P) concepts able to run on 
constrained nodes. The approach is termed as holistic because 
it considers the entirety of the data flow between sensor and 
service(s), supported by lower layers, rather than each layer 
specifying its own behaviour in isolation.  

Figure 1 shows the layers in the architecture for nodes of 
different capability with their different roles, e.g. a node that 
only fulfills the forwarder role does not have a local 
instrumentation layer, but has an object space to store data 
from remote peers. It also shows how a HBase store is modeled 
as a sink service and how it would be exposed to constrained 
nodes using a hpp_endpoint. The Data Model Service Layer 
provides a high level abstraction for node data and it uses the 
object space to hold remote peer data and local data (if 
supported by the role), so simplifying the communication of 
data between sensor nodes and higher level applications. The 
local instrumentation (li) layer supports local data and provides 
an abstraction above device specific layers to map to the 
underlying node functions or data.  
 

 
Fig. 1.  Holistic Architecture 

A. Service Abstractions and Data Model Service Layer 
The architecture’s Data Model layer uses a set of service 

roles to model the data flow and to abstract the lower layer 
interfaces for nodes and hide the underlying network and node 
specifics from the application developer. The Data Model (DM) 
Service layer abstracts the service capabilities using roles 
reflecting the nature of the data exchange. The defined roles 
support a range of capability with the following roles: 

• DM_SINK_SRV (adds interest objects to its peers for 
data it wants) 
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• DM_SOURCE_SRV (sends its sensor data) 
• DM_FORWARDER_SRV (forwards to peer services) 
• DM_STORE_SRV (stores data from peer services) 
• DM_MATCHER_SRV (provides results of advanced 

matching queries) 
• DM_AGGREGATOR_SRV (aggregates data from 

peer services) 
A node can have several roles according to its resources, e.g. 

a constrained node may only act as a DM_SOURCE_SRV, not 
storing its own data or a node may remove its capability as a 
DM_FORWARDER_SRV if low on remaining power. Source 
and sink roles can be seen in other flow based approaches such 
as Flume, used to deliver large amounts of log data in Web 
and Cloud Computing services. We have added the forwarder, 
aggregator and store roles for the capabilities of WSN nodes. 

Services use the holistic peer-to-peer (hpp) protocol to 
exchange hpp messages using the hpp_endpoint and 
hpp_channel. A hpp service registers/deregisters instances of 
its objects (and their specific methods), its capabilities (in a 
template object) and its interests in other objects with the object 
space layer. These objects may be forwarded to remote peers 
and services must renew their object leases with their peers. A 
service’s capabilities are thus advertised to other services, 
allowing  a node to set its sensing and response timing based on 
the received interests, e.g. a sensor may be able to report every 
15 minutes, but only sends a reading every hour based on what 
interests were provided by applications. 

B. The Object Space Layer  
The object library is a simple object-like infrastructure 

suitable for resource constrained devices with object functions 
to support a simple shared object store and associated API. It is 
used to store locally instrumented data and data received from 
other nodes for aggregation or other purposes. It is based on  
Linda’s tuple space concepts. The decoupling in time and space 
of tuple space communication enables interactions where 
applications can be added or removed independently and do not 
have to be available simultaneously to transfer data between 
themselves. Our object library has been implemented in C and 
its main methods are objectAdd(), objectRemove(), 
objectGetByHandle(),objectGetByName(), objectLeaseRenew() 
and objectGetInstance(). 

The object space is non-prescriptive about the classes and 
instances it holds, except that it requires the use of a template 
to hold the type of each attribute of the object and its methods. 
An object structure represents an object held in the object store, 
with its template and each object has a lease, allowing for the 
space to remove objects if leases are not renewed. The template 
and instance are kept separately to allow for objects that 
represent a class (i.e. do not have instances) and to allow a 
range of object encodings. For resource constrained devices it 
also offers an efficient way of transferring them to other nodes, 
where the template (or a reference) can be sent once to another 
node prior to the encoded object. Templates are also used to 
define node capabilities on a model/object basis (i.e. to specify 
which properties of a standard object are instrumented). The 
definition of a template is transparent to the object store. 

C. Local Instrumentation Layer 
This layer hides the platform specific sensor 

implementations and provides get()/set() functions and method 
prototypes for node functionality such as power off. It also 
allows the use of C language features such as pointers to reduce 
memory usage. It also provides per attribute structures to allow 
only those object/sensor attributes supported by the node to be 
implemented and these can be built into higher level 
information models, e.g. an SNMP MIB table or CIM object. 

D. The Holistic P2P Protocol (HPP) and Hpp Channel 
A simple message protocol suitable for resource limited 

nodes has been developed to support interaction between the 
different service roles we have defined. It uses a hpp_channel 
between hpp_endpoints to provide a single API to run on top of 
various network and data link layers, so that applications do not 
require knowledge of the underlying network. It uses a limited 
set of message types in line with the operations of the object 
space. HPP has the characteristics of a P2P system at the 
application level as its hpp_channel and defined roles allow 
nodes to act in an autonomic and dynamic manner where nodes 
enter or leave the network and any node may initiate, manage 
or terminate a session with other nodes. It does not at present 
support node discovery (but can discover node capabilities) or 
overlay networks.  
 

 
Fig. 2.  Sample Service Interaction  

HPP messages consist of blocks, always started by at least a 
Header block followed by other blocks for Address, Data and 
Credentials. Some messages may only hold a header block and 
every block has the same preamble of a Command, a block 
length and a block id, so a WSN node only has to receive the 
header block and parse the command to determine if it should 
process this message. During the Connection Phase, the 
messages are Hello, Attach and Detach and during the Data 
Phase, the messages are Get, Add, Remove, Get Response, 
Action, Notify and Acknowledgement. All nodes must support 
Hello, Attach, Detach, but nodes may support only Get/Get 
Response in the Data phase (shown in its capabilities). The 
command types map well to the REST approach, although 
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Action, Notify primitives have been added for the actuator and 
alert functionality of sensor devices. 

The sequence diagram in Figure 2 shows an example 
message interaction (after Hello and not showing object lease 
renewal), where a source service (on a node) adds both its 
service and node class templates and instances to a store 
service, e.g. on a higher powered node. This store service is 
queried by a sink service for the node’s capabilities and 
determines that there is a sensor on the node, which it then 
retrieves. Other interactions are possible, e.g. the source service 
adds its sensor class and instance to a store service (at a period 
matching the sensor reading update) so the retrieval by the sink 
service can use the store service’s data for that node and not 
require additional transmission to the original source node. 

V. IMPLEMENTATION 

A. HPP  Implementation 
This section discusses the design and implementation issues 

encountered in an initial implementation using the CIM 
information model for sensor objects and storing this data in 
HBase. The implementation in ‘C’ includes the Data Model 
Service, Object Space and Local Instrumentation Layers 
shown in Figure 1 and a DM_SINK_SRV service written in 
Java to integrate with HBase. The ‘C’ code was implemented 
initially on Linux, using the hpp_service abstraction on top of 
the hpp channel abstraction to hide the specific network layer 
details. Testing was done using Linux based source nodes 
sending hpp messages to transfer their classes and instances to 
a specified number of remote nodes using a small number of 
functions, as the following code is all that is required for a 
service to start receiving messages from other services: 

 
    rv = hpp_endpoint_check(endpoint_ptr); 

if (rv == 0) {        
  channel_ptr = hpp_endpoint_accept(endpoint_ptr); 
} else if (rv > 0 ) { 
  hpp_endpoint_get_messages(endpoint_ptr); 
} // timed out with no data, so loop again 
 
The Linux code was then ported to Contiki running on a 

Sky WSN mote (emulated in Cooja), using the CoAP 
implementation. This implementation created objects and 
added them to the object space at different times as the node 
started up (and added dynamically later), e.g. the DM service 
class and instance objects were created at the start of the 
process, followed by the node class and instance and the local 
instrumented objects for led and temperature sensor. This 
showed the architecture and its abstractions worked across 
Linux and constrained nodes. 

B. Data Model Service Layer 
The initial Contiki implementation includes a number of 

custom CoAP "resources" on top of the data model layer, using 
the object space. For example, a DM_SOURCE_SRV service 
and node objects were implemented as key value pair objects 
be sent to another node such as a DM_STORE_SRV. Also, a 
CoAP resource was implemented for the creation of HPP 

objects dynamically. Classes and instances for red/blue/green 
leds, temperature sensor and node, using a subset of attributes 
from the CIM object, were also implemented. The following 
pseudo-code (not including error code) shows the service 
adding its own service class template and initialising its role(s): 

 
uchar dm_register_dm_service(objectAttr_t *template_ptr, 

objectAttr_t *inst_ptr, objectAttr_t *inst_key_ptr) { 
 

  if (dm_srv_class_hdl == 0)  
     dm_srv_class_hdl = dm_add_service_class( 

                         &DMServiceTemplate,    
                         DM_SERVICE_CLASSNAME);  
 

  hdl = dm_add_instance(…..); 
 
  if (service_role || DM_SOURCE_SRV) { 
      dm_source_init(); // initialise my local instrumentation (li) 
  }         // objectswith object store  
  if (service_role || DM_SINK_SRV) { 

     dm_sink_init(); // add objects we are interested in to 
  }         // object space on remote peers 
  if (service_role || DM_STORE_SRV) { 
      dm_store_init(); // set up support for holding  
  }       //instrumentation objects from peers 
  return (0); 
} 

The data model layer provides support functions on top of 
the object library; dm_initialise() and dm_add_class(), 
dm_add_instance(), dm_remove_instance() for local or remote 
sensor classes/instances. Retrieving object instances is done by 
dm_get_instance(inst_handle) or dm_find_instance(), which 
uses key values or particular attribute values according to the 
matching specified. Matching is implemented in the data model 
layer and not the object library (the contents of objects are 
transparent to it). A hpp Add message is sent to a remote node 
to add a class or instance, with the remote node calling 
setupTemplate() to process the class attributes received and 
then dm_add_class() or calling dm_add_instance() with the 
received instance attributes. 

C. Local Instrumentation Layer 
Locally instrumented data is implemented using an 

li_class_property for each property and an li_inst_property 
with the value. This per property approach aligns with the 
hardware/vendor specific implementations to access particular 
readings or data,  e.g. to access sensor data by reading a value 
from a register or an API call like get_sensor_reading(). The 
li_class_property structure does not make any assumption 
about the object it is to be put in (it could appear in more than 
one) and can be combined into different classes for particular 
information models or be added into tables or key value stores 
such as HBase. A node’s local instrumentation (li) classes and 
instances are added to its local object store and optionally 
converted into key value pairs for adding to other nodes. 

Key and non-key properties are treated separately as many 
information models use keys to identify groups of data (rows in 
SNMP or HBase or object instances in CIM), but also because 
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resource constrained devices often set keys when the class is 
created and can be allocated then, whereas non-key data in an 
instance changes and may be read by a dynamic getter function.  

D. HPP Integrated Erbium-CoAP Implementation on Contiki 
The Linux implementations of the local instrumentation (li) 

layer, data model and object space, supporting libraries 
(memory utilities, doubly linked list, hash, lease) and the 
message building parts of the hpp protocol have been ported to 
Contiki as part of the pre-existing erbium-REST 
implementation example [9]. This approach allowed these 
items to be tested on hardware with a supporting REST 
infrastructure and for the port to use existing Contiki libraries. 
The code samples below show the integration itself was 
straightforward. The hpp message payload was simply added as 
CoAP payload using the call REST.set_response_payload(). It 
is expected that adding the hpp channel abstraction on top of 
the existing Contiki networking stack will not be difficult. The 
additional code required in Contiki compared to Linux 
consisted of: 
• A Contiki call to initialize hpp_element. The simple call 

service_hdl = service_initialise(); was added to the Contiki 
main PROCESS to call the initialize code in the Linux 
hpp_service daemon to set up the service and node objects. 

• Integrating with the REST code. This consisted of code to 
add the resource into the erbium resource handling list 
rest_activate_resource(&resource_hppnode) and the code 
to implement that resource. The CoAP resources were 
accessed via URLs using a suffix of hpp/[classname] and 
the node responded with the properties implemented in 
that hpp object as key value pairs in the CoAP payload, 
using multiple CoAP buffers. A RESOURCE macro is 
used to define a CoAP resource and the CoAP verbs such 
as get or put it handles, with a corresponding function to 
implement it called resource-name_handler. The handler 
below for the node object returns the node instance from 
the object space when queried over CoAP: 
 
void hppnode_handler(…) { 
    object_t *instObj_ptr = NULL;  
    instObj_ptr = dm_find_instance(NODE_CLASS); 
    hpp_send_object_resp(instObj_ptr, response, buffer);  
} 

• Adding a Resource for Hpp Objects. This allowed a URI 
like /nodeAddr/hpp/object?hdl=x to select an object by 
the handle allocated when it was created in the object 
space or to walk through the available objects, as shown 
by the following handler: 

 
void hppobject_handler(…) { 
    len = REST.get_query_variable(request, "hdl", &chdl); 
    instObj_ptr = dm_find_object_by_handle(hdl); 
    hpp_send_object_resp(instObj_ptr, response, buffer); 
} 

• Integrating with the Contiki hardware abstractions. This 
pseudo-code shows the li layer code wrapping the Contiki 
led calls  and is called by a resource handler to set a led: 

  
li_mote_method(int method_cap, int inst_id, int setting) { 
uint8_t led = (uint8_t)inst_id; 
if (method_cap == MOTE_CAP_LED_SET) 
    if (setting == MOTE_LED_ON)  
        leds_on(led); // Removed  leds_off,  leds_toggle code 
} 

E. Integration of Data From  Contiki Based Node with HBase 
We created a HBase table for each hpp class with a row for 

each instance. The tables have two column families named 
"key attributes" and "attributes" and a column family qualifier 
for each attribute. A row key consists of the hpp object’s key 
attributes, node id and a timestamp.  

A Java CoAP client (a DM_SINK_SRV) was written that 
connected to the desired WSN node via a socket to the CoAP 
Server on the Contiki rpl border router. It built a COAPPacket 
using COAPPacket(), called the serialize() method and sent it 
using the COAP libraries. It then passed the reply data and the 
HBaseConfiguration object it had created to writeToHBase(). 

The code extract below shows writeToHBase(). It assumes 
the table has already been created by an earlier hpp command 
to add the class and shows how the received hpp data as key 
value pairs is processed and written as a row to the HBase table 
for that class: 

 
public static void writeToHBase(Configuration conf,  
    String tableName, String hppData) { 
 
  Map<String, String> keyKvs = getKeyMap(hppData); 
  Map<String, String> attrKvs = getAttrMap(hppData); 
  HBase admin = new HBaseAdmin(conf); 
  HTable table = new HTable(conf, tableName); 
  String rowKey = createRowKey(keyKvs);  
  Put put = new Put(Bytes.toBytes(rowKey)); 
  // Add hpp data to column families 
  addMapToHBasePut(put, keyKvs, "key attributes");  
  addMapToHBasePut(put, attrKvs, "attributes"); 
   table.put(put); 
   admin.close(); 
} 

VI. EVALUATION OF IMPLEMENTATION 
The initial implementation is evaluated in this section in 

terms of the abstractions used, the ability to map properties to  
objects or tables, HBase integration, the value of the initial 
Linux implementation and its memory use. It is planned to 
perform more objective tests in defined scenarios. 

1)  Abstractions 
Evaluating abstractions can be done by ensuring that “end-

user” and “WSN geek” are catered for [6]. The “end-user” is a 
domain expert concerned with using the WSN data and not 
with the network/node specifics, which  the “WSN geek” is 
concerned with. We have shown examples where the end user 
is able to access the data simply with known CoAP Resources 
or objects or from the HBase store. The “WSN geek” has been 
provided with a cross-platform architecture using an object 
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space and data model layer with a local instrumentation layer 
for incorporating node specific functionality and capabilities. 
The code extracts show that these items made it straightforward 
for a node to implement objects from a rich information model 
on both a Linux and Contiki platform and to map to CoAP 
Resources. This also meets the design goal of the same 
abstractions giving a generic information infrastructure across 
heterogeneous platforms of different capability, even when 
used with delivery protocols other than the hpp protocol. The 
object space was also shown to easily map objects to specific  
CoAP REST resources and the hppobj resource above showed 
it also easily supported discovery and searches across the 
implemented objects.  

The value of some of the service abstractions has been 
shown with a Java DM_SINK_SRV service that receives data 
as hpp key value pairs  from Contiki and stores that data in 
HBase and also a DM_SOURCE_SRV that adds its classes and 
instances to specific remote nodes (via hpp add directly or in a 
CoAP PUT payload).  

2) Object and Property Node Mapping 
The sample code has shown that an attribute based 

implementation of the objects fits naturally with the low level 
specifics of the nodes and maps to CoAP REST resources, such 
as led and sensors and groupings of individual attributes, such 
as proposed in the IP for Smart Objects (IPSO) Application 
Framework [27]. The implementation showed that the 
approach of having a class object as a template with attribute 
descriptions and its instance object with attribute values was 
successful in three ways; it allowed selective use of attributes 
from CIM classes on constrained nodes (important for the 
many strings used in objects such as CIM_NumericSensor), it 
supported a set of abstractions in a COAP/REST environment 
and also allowed straightforward mapping of these attributes 
into a HBase store. 

3) HBase Integration 
In terms of data mapping, the hpp objects mapped cleanly 

to HBase tables and the use of a property per attribute mapped 
well to HBase columns. Furthermore, the approach of separate 
key and non-key properties could be mapped to separate HBase 
column families, allowing a HBase scan across all rows of key 
attributes as well as non-key attributes, rather than only being 
able to use the key attributes as instance identifiers. The hpp 
message primitives also mapped well to HBase functionality, 
e.g. the two column families defined for attributes allowed 
adding new objects with their attributes by creating a table (and 
its columns), which can be done dynamically on receiving a 
hpp Add message with the template class. Similarly, a hpp Add 
of an instance (at a given time) will result in a new row in the 
object’s table. The architecture allowed hpp data on the node to 
be transported and stored in HBase, using CoAP, requiring no 
application level proxy and only requiring a proxy at the 
network level (the rpl border gateway). 

4) Linux Implementation and Code Porting Issues 
The approach of initially implementing on Linux allowed 

the design to be refined and the code to be debugged and tested 
more easily and rapidly, using the more advanced Linux 
development and debug environments. It also provided services 

on Linux that could integrate easily with those on constrained 
nodes. These benefits came at little cost in terms of the 
subsequent port to Contiki as most of the code did not require 
any changes, given the availability of standard C libraries in 
Contiki. The main code changes were to provide a revised 
Makefile, a simplified implementation of gettimeofday() used 
for object leases and to change the type of function parameters 
and structure members to reduce size (e.g. from int to char). 

5) Memory Usage 
It was necessary to remove parts of the erbium-CoAP code 

to create space for the hpp code. Retaining parts of the erbium 
and CoAP stack did allow using the CoAP transport and the 
Copper Browser plugin for testing. A more complete 
integration with CoAP would reduce the memory footprint and 
allow more hpp functionality to be included. 

TABLE I.  MEMORY USAGE OF REST EXAMPLE 

 Original Erbium REST 
Code Erbium  +  HPP Code 

 Code 
(%) Data(%) Total 

(%) 
Code 
(%) Data(%) Total 

(%) 

libc 8 0 7 9 0 8 

core 9 3 8 7 2 6 

Network 50 74 53 50 63 52 

Platform 12 3 10 10 4 9 

coap 17 17 17 11 12 11 

rest 5 3 5 2 4 2 

hpp n/a n/a n/a 11 15 12 

 
Table 1 shows the percentages (both applications varied by 

a few 100 bytes) of the available memory (10K RAM, 48K 
Flash) used for particular sections in the original er-rest-
example application and for the modified application with hpp. 
The hpp application included resources for the hpp led and 
objects for Service, node and reduced CIM_AlarmDevice and 
CIM_NumericSensor. The REST engine and CoAP use a 
small amount of memory compared to networking, which is 
equivalent to that for the platform and core. It can be seen that 
the code and data usage of hpp is equivalent to that of CoAP, 
so that it is feasible for a constrained device. 

VII. CONCLUSION 
We have proposed a set of requirements for an architecture 

that reflects the characteristics of WSNs and would allow 
WSNs to be more widely deployed and more easily integrated 
with applications, including Big Data services to collect and 
analyse their data. We have proposed a holistic architecture 
with defined abstractions, software layers, a loosely coupled 
object space and a simple and flexible protocol. These 
abstractions also enabled the approach of developing the code 
initially on Linux and then porting to Contiki. We have also 
evaluated the architecture based on an initial implementation. 

The first requirement has been met by showing that the 
architecture and abstractions can be relatively easily 
implemented on both constrained WSN nodes with acceptable 
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memory use and are also suitable for more capable devices and 
applications, e.g. on Linux. The second requirement has been 
met by providing abstractions for the basic operations of a 
sensor node and the services using it, e.g. the local 
instrumentation layer handled the underlying Contiki hardware 
libraries and the data model layer handled the REST resources. 
The third requirement has been met with the service roles, 
although only the source, sink and store roles have been 
implemented at this point. The fourth requirement has been met 
by showing the exchange of sensor information from the node 
to CoAP to HBase independent of the underlying technology.  

Further work is planned to port the hpp channel abstraction 
to Contiki and to investigate further integration of hpp with the 
CoAP transport, to implement the other service roles in the 
architecture, as well as investigating the use of service 
capabilities/interests, particularly in terms of the interaction 
with Big Data services in the cloud to perform processing. It is 
also planned to investigate support for P2P overlays and the use 
of Distributed Hash Tables (DHT). It is also planned to 
perform larger scale tests with more nodes to verify the 
architecture meets the fifth requirement of being able to scale 
from small static networks to larger dynamic, heterogeneous 
environments and to show the benefits of the characteristics of 
the P2P and tuple concepts in the architecture (high scalability, 
redundancy, fault-tolerance and self-management). 

In summary, this architecture has been shown to enable a 
holistic, high-level approach on constrained and powerful 
platforms and enable a straightforward integration with Contiki 
and HBase to store sensor data, requiring only simple message 
reformats without requiring semantic changes or application 
proxies in an infrastructure of nodes and services. 
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