
A Holistic Architecture for the Internet of Things,
Sensing Services and Big Data

David Tracey, Cormac Sreenan
Dept. Of Computer Science,

University College Cork,
Cork, Ireland

Abstract—Wireless Sensor Networks (WSNs) increasingly enable

applications and services to interact with the physical world. Such
services may be located across the Internet from the sensing network.
Cloud services and big data approaches may be used to store and
analyse this data to improve scalability and availability, which will be
required for the billions of devices envisaged in the Internet of Things
(IoT). The potential of WSNs is limited by the relatively low number
deployed and the difficulties imposed by their heterogeneous nature
and limited (or proprietary) development environments and interfaces.
This paper proposes a set of requirements for achieving a pervasive,
integrated information system of WSNs and associated services. It
also presents an architecture which is termed holistic as it considers
the flow of the data from sensors through to services. The
architecture provides a set of abstractions for the different types of
sensors and services. It has been designed for implementation on a
resource constrained node and to be extensible to server
environments. This paper presents a ‘C’ implementation of the core
architecture, including services on Linux and Contiki (using the
Constrained Application Protocol (CoAP)) and a Linux service to
integrate with the Hadoop HBase datastore.

Index Terms—Wireless Sensor Networks, Tuple Space,
Information Model, Protocols, Cloud Computing, Big Data

I. INTRODUCTION
Wireless Sensor Networks (WSNs) are being enabled by

the increasing availability of sensors and advances in wireless
technologies, hardware and the use of IP for connecting
resource constrained devices. The use of micro IP stacks (and
IPv6 over Low power Wireless Personal Access Networks
(6LowPAN) [1] has enabled constrained devices to connect to
the Internet in a so called “Internet of Things” (IoT).
Definitions of IoT generally share the idea that it relates to the
integration of the physical world with the virtual world of the
Internet [2]. IoT is characterised by an interconnected set of
individually addressed and constrained (possibly autonomous)
devices in a distributed system, with sensing/active devices for
physical phenomena, data collection, and applications using
sensing, computation and actuation. There could potentially be
billions of such devices connected across the Internet with
predictions of 50 to 100 billion devices being connected to the
Internet by 2020 [3].

WSNs have a (possibly large) number of devices with
sensing capabilities, limited processing capability and wireless
connectivity (allowing nodes to be deployed close to the
phenomenon being observed) to other sensor or gateway
nodes. WSN nodes exist to sense a particular entity, collect

(and possibly parse or aggregate) the data and send the data to
one or more destinations and ultimately to an application
across a range of areas, e.g. environmental monitoring,
surveillance and healthcare. Such deployments are usually
dedicated and proprietary or specialized to optimise one
particular aspect such as lifetime.

The availability of increased storage and processing power
at a lower cost with greater bandwidth has enabled a range of
Cloud Computing services. In terms of IoT, this allows more
sources of data to be collected and for the data to be held for a
longer time and to be processed by powerful cloud based
applications and Big Data techniques, e.g. HBase and
MapReduce. Big Data can be characterised by the 3 ‘Vs of
Volume (size of the data), Variety (range in type and source of
data) and Velocity (frequency of data generation) [4].

The constrained nature of WSN nodes in terms of
processing power, memory and energy consumption makes it
difficult to enable WSNs to be more easily deployed,
developed and integrated with new Internet based services. A
key challenge is to enable WSNs to become extensions of the
Internet infrastructure, to take full advantage of Cloud and Big
Data services [5] and be universally available, rather than
isolated and relatively small islands of sensor networks. To
address this challenge, this paper presents a set of architectural
requirements, a resulting layered architecture and abstractions
for the data exchange roles taken by services on WSN nodes
and in the Cloud, supported by a novel protocol. It also
evaluates an initial implementation of the architecture.

The remainder of this paper is organised as follows. We
discuss prior work in section II and present a set of
architectural requirements to meet the challenge above in
Section III. Section IV presents the architecture, including its
service abstractions, object library and introduces the message
protocol. Sections V and VI present an initial implementation
and evaluation of the architecture and its HBase integration.
The paper concludes in Section VI.

II. EXISTING AND EMERGING FRAMEWORKS
This section outlines the current frameworks and

approaches used in the Internet of Things, WSN software,
Cloud Integration and Big Data. A recent survey shows that
only 13 of 28 WSN systems surveyed have actually been
implemented on hardware rather than run in simulators [6] and
that there is still an absence of broad abstractions, which we
propose later. Hence applications are often bound to a
particular WSN technology and not easily portable as the

2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

978-0-7695-4996-5/13 $26.00 © 2013 IEEE

DOI 10.1109/CCGrid.2013.100

546

application developer must have detailed knowledge of each
underlying technology.

A. Constrained Application Protocol and IoT
The Constrained Application Protocol (CoAP) has been
developed by the Internet Engineering Task Force (IETF) and
is targeted at the IoT area [7]. It is a standard for a specialized
web transfer protocol for constrained nodes and constrained
(e.g. low-power, lossy) networks. It is built on top of UDP and
uses web concepts such as URIs and media formats for easy
integration of such constrained environments into HTTP and it
addresses issues such as the overhead of HTTP headers, XML
parsing, TCP over lossy links and the handling of node duty
cycles. It uses the REST architectural style [8], where
resources (such as sensors) are represented in a number of
formats and accessed by their Universal Resource Identifier
(URI) using a limited set of verbs, such as GET, POST, PUT,
DELETE in HTTP. The decoupled nature of this style
facilitates application development and scalability.

B. Cloud Integration Approaches
The NIST has proposed three main Cloud service

types/models of Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS) [10].
Sensing as a Service has been proposed, with elements of an
IAAS solution [5], but more often as a PAAS. Commercial
offerings such as cosm.com allow users to upload their sensor
data using a defined set of attributes.

Sensor-Cloud [11] uses SensorML to describe sensor
metadata and manages sensors via the cloud, rather than
providing their data as a service. The OpenIoT [12]
middleware platform comprises an IoTCloudController
(provides SOAP Web services for sensor registration,
discovery, subscription and control), a JMS style Message
Broker, Sensors (with a module to publish to OpenIoT) and
Clients (which subscribe to or consume sensor data). Another
approach uses a data channel based on Java FileInputStream(),
FileOutputStream() to hide the underlying network protocols
and a Sensor Server on the wireless network’s master node to
filter sensor data and to deliver it to cloud services [13]. This
approach is simple, but limited in its flexibility. Another
integration approach uses a content-based pub-sub model for
event publications and subscriptions for asynchronous data
exchange, requiring a gateway at the edge of the cloud to
receive sensor data, a Pub/Sub Broker to process and deliver
events to registered users and a range of components to
support SaaS applications [14].

These middleware approaches to cloud integration require
specific application gateways/proxies at the edge of each
wireless network and their own sensor data definition.

C. Big Data
The use of Big Data is well established commercially to

analyse large amounts of data in order to make timely
decisions, e.g. in retail for analysing consumer behaviour and
preferences. This paper illustrates how seamlessly our holistic
architecture can accommodate the use of Apache HBase to
store sensor data. HBase uses the Hadoop Distributed File

System (HDFS) and is a distributed, versioned, column-
oriented, store, derived from Google BigTable. HBase stores
data into tables, rows and cells. Rows are sorted by row key
and each cell in a table is specified by a row key, column key
and a version, with the content held as an un-interpreted array
of bytes. We consider HBase suitable for WSN data not just
because it is scalable and can store large amounts of replicated
data, but because of its key value nature and flexible data
access. The data access is provided by a rapid query using a
get with a row key and a scan using an arbitrary combination
of selected column family names, qualifier names, timestamp,
and cell values. It also provides sparse tables, which is
appropriate for cases where not all WSN nodes can provide all
the columns defined. Columns belong to a particular column
family and are identified by a qualifier. Column families must
be declared at schema definition time, but individual columns
can be added to a family at run time. The associated
MapReduce model has been shown to be appropriate for
processing sensor data [15].

D. WSN Software Frameworks
Programming WSN applications and nodes is time-

consuming, error-prone and difficult requiring low level
hardware and network knowledge, often using a vendor
specific environment for particular hardware. Software
Engineering concepts and higher level abstractions are required
to improve the development process and ease the integration
with other systems in order for wider deployment of WSNs [16]
as part of the seamless, context aware environments envisaged
in pervasive computing [17], where applications/services are
interested in the sensed information, not the underlying
hardware or wireless network. Special purpose operating
systems like Contiki are used on more constrained nodes, while
more powerful hardware platforms such as SUNSPOT have
high level language support such as Java, but at the cost of
more expensive hardware and higher power consumption.
TinyDB [18] essentially considers the WSN as a distributed
database and can be considered limited by its table based
approach and relational queries, especially in terms of handling
events. Middleware approaches such as Sensation[19] treat the
sensor network as a whole as an information source similar to a
database, with its middleware acting as an integration layer
between applications and networks and a proxy with a prioi
configuration for particular WSNs to hide device and network
specifics. Agent based middleware requires particular node
computational capability and the energy used by traffic for
code mobility reduces node lifetime [20]. A data-centric
approach such as directed diffusion has the potential of
significant energy savings and relatively high performance, but
it is tightly coupled to a query on demand data model where
applications can accept aggregated data [21]. TeenyLIME [22]
is another higher level approach, which is based on a shared
memory space (tuple space), derived from Linda’s [23] limited
number of simple operations to insert, read, and withdraw
tuples from a tuple space. TeenyLIME has been deployed in a
real-world application and shown the usefulness of a tuple
space approach in WSNs [24], but a node’s local tuple space is
only shared with the nodes within communication range.

547

III. ARCHITECTURE REQUIREMENTS
The objective of our architecture is to simplify the

development, configuration and deployment issues to enable
ubiquity of WSNs, easier interfacing to other networks and the
easier development of generic and more powerful applications
using sensor data. To meet this objective, we define the
following architecture requirements:

1. It must be independent of particular node hardware,
must handle a range of node functional capabilities and
provide an extensible layered system able to handle the
radio channel and environmental factors, within the
required limits of power consumption.

2. It must provide abstractions for the basic operations
required of a sensor node and the services using it,
which map easily to a range of heterogeneous devices
and higher level services.

3. It must clearly define the possible roles of nodes and
any protocols must be sufficiently simple for low
capability devices to participate. It is unreasonable to
demand that all nodes have equal functionality, as this
limits the ability to handle more powerful nodes.
Nodes will, however, require a minimum level of
functionality, e.g. forwarding data to a neighbour.

4. It must provide a consistent means to exchange sensor
information independent of the underlying technology
and provide specific support for the modelling of
sensor data to allow integration into higher level
systems. A sensor node should be able to advise other
nodes and services of its sensing and platform
capabilities.

5. It must be able to handle small, static networks and
allow the system to adapt as the network
grows/changes or encounters other networks and
support applications discovering and collaborating
without a centralized coordination facility.

The need for a more holistic approach can be seen in a
remote healthcare monitoring scenario, where sensors connect
to a central gateway in a house over a wireless network. The
gateway is responsible for storing the data locally and
uploading data to a central health monitoring site, possibly via
a central gateway/proxy and cloud based services to analyse the
data [25]. Such solutions often require sensor application and
proxy design to handle data integration, network integration
and security concerns. This lack of unified abstractions will
become more problematic in this scenario as Wireless Body
Area Networks are deployed, e.g. IEEE802.15.6 which allows
up to 64 nodes on a body to connect via a central co-ordinator
node. When large numbers of WSNs/BANs are deployed,
treating these networks of nodes as peripheral devices and
connecting them to the Internet via proxies or sinks will limit
performance and scalability [26].

IV. THE HOLISTIC ARCHITECTURE
This section proposes an architecture to meet the

requirements from section II. The key principle underlying it is
that all WSNs are primarily about delivering sensed data/events
to one or more applications (periodically, on-demand or

asynchronously) or commands to actuators from applications.
The architecture meets the requirements in section II by using a
number of service abstractions to model the different roles a
service can perform, defined software layers and an object
infrastructure to support information models. It uses a simple
protocol based on Peer to Peer (P2P) concepts able to run on
constrained nodes. The approach is termed as holistic because
it considers the entirety of the data flow between sensor and
service(s), supported by lower layers, rather than each layer
specifying its own behaviour in isolation.

Figure 1 shows the layers in the architecture for nodes of
different capability with their different roles, e.g. a node that
only fulfills the forwarder role does not have a local
instrumentation layer, but has an object space to store data
from remote peers. It also shows how a HBase store is modeled
as a sink service and how it would be exposed to constrained
nodes using a hpp_endpoint. The Data Model Service Layer
provides a high level abstraction for node data and it uses the
object space to hold remote peer data and local data (if
supported by the role), so simplifying the communication of
data between sensor nodes and higher level applications. The
local instrumentation (li) layer supports local data and provides
an abstraction above device specific layers to map to the
underlying node functions or data.

Fig. 1. Holistic Architecture

A. Service Abstractions and Data Model Service Layer
The architecture’s Data Model layer uses a set of service

roles to model the data flow and to abstract the lower layer
interfaces for nodes and hide the underlying network and node
specifics from the application developer. The Data Model (DM)
Service layer abstracts the service capabilities using roles
reflecting the nature of the data exchange. The defined roles
support a range of capability with the following roles:

• DM_SINK_SRV (adds interest objects to its peers for
data it wants)

548

• DM_SOURCE_SRV (sends its sensor data)
• DM_FORWARDER_SRV (forwards to peer services)
• DM_STORE_SRV (stores data from peer services)
• DM_MATCHER_SRV (provides results of advanced

matching queries)
• DM_AGGREGATOR_SRV (aggregates data from

peer services)
A node can have several roles according to its resources, e.g.

a constrained node may only act as a DM_SOURCE_SRV, not
storing its own data or a node may remove its capability as a
DM_FORWARDER_SRV if low on remaining power. Source
and sink roles can be seen in other flow based approaches such
as Flume, used to deliver large amounts of log data in Web
and Cloud Computing services. We have added the forwarder,
aggregator and store roles for the capabilities of WSN nodes.

Services use the holistic peer-to-peer (hpp) protocol to
exchange hpp messages using the hpp_endpoint and
hpp_channel. A hpp service registers/deregisters instances of
its objects (and their specific methods), its capabilities (in a
template object) and its interests in other objects with the object
space layer. These objects may be forwarded to remote peers
and services must renew their object leases with their peers. A
service’s capabilities are thus advertised to other services,
allowing a node to set its sensing and response timing based on
the received interests, e.g. a sensor may be able to report every
15 minutes, but only sends a reading every hour based on what
interests were provided by applications.

B. The Object Space Layer
The object library is a simple object-like infrastructure

suitable for resource constrained devices with object functions
to support a simple shared object store and associated API. It is
used to store locally instrumented data and data received from
other nodes for aggregation or other purposes. It is based on
Linda’s tuple space concepts. The decoupling in time and space
of tuple space communication enables interactions where
applications can be added or removed independently and do not
have to be available simultaneously to transfer data between
themselves. Our object library has been implemented in C and
its main methods are objectAdd(), objectRemove(),
objectGetByHandle(),objectGetByName(), objectLeaseRenew()
and objectGetInstance().

The object space is non-prescriptive about the classes and
instances it holds, except that it requires the use of a template
to hold the type of each attribute of the object and its methods.
An object structure represents an object held in the object store,
with its template and each object has a lease, allowing for the
space to remove objects if leases are not renewed. The template
and instance are kept separately to allow for objects that
represent a class (i.e. do not have instances) and to allow a
range of object encodings. For resource constrained devices it
also offers an efficient way of transferring them to other nodes,
where the template (or a reference) can be sent once to another
node prior to the encoded object. Templates are also used to
define node capabilities on a model/object basis (i.e. to specify
which properties of a standard object are instrumented). The
definition of a template is transparent to the object store.

C. Local Instrumentation Layer
This layer hides the platform specific sensor

implementations and provides get()/set() functions and method
prototypes for node functionality such as power off. It also
allows the use of C language features such as pointers to reduce
memory usage. It also provides per attribute structures to allow
only those object/sensor attributes supported by the node to be
implemented and these can be built into higher level
information models, e.g. an SNMP MIB table or CIM object.

D. The Holistic P2P Protocol (HPP) and Hpp Channel
A simple message protocol suitable for resource limited

nodes has been developed to support interaction between the
different service roles we have defined. It uses a hpp_channel
between hpp_endpoints to provide a single API to run on top of
various network and data link layers, so that applications do not
require knowledge of the underlying network. It uses a limited
set of message types in line with the operations of the object
space. HPP has the characteristics of a P2P system at the
application level as its hpp_channel and defined roles allow
nodes to act in an autonomic and dynamic manner where nodes
enter or leave the network and any node may initiate, manage
or terminate a session with other nodes. It does not at present
support node discovery (but can discover node capabilities) or
overlay networks.

Fig. 2. Sample Service Interaction

HPP messages consist of blocks, always started by at least a
Header block followed by other blocks for Address, Data and
Credentials. Some messages may only hold a header block and
every block has the same preamble of a Command, a block
length and a block id, so a WSN node only has to receive the
header block and parse the command to determine if it should
process this message. During the Connection Phase, the
messages are Hello, Attach and Detach and during the Data
Phase, the messages are Get, Add, Remove, Get Response,
Action, Notify and Acknowledgement. All nodes must support
Hello, Attach, Detach, but nodes may support only Get/Get
Response in the Data phase (shown in its capabilities). The
command types map well to the REST approach, although

549

Action, Notify primitives have been added for the actuator and
alert functionality of sensor devices.

The sequence diagram in Figure 2 shows an example
message interaction (after Hello and not showing object lease
renewal), where a source service (on a node) adds both its
service and node class templates and instances to a store
service, e.g. on a higher powered node. This store service is
queried by a sink service for the node’s capabilities and
determines that there is a sensor on the node, which it then
retrieves. Other interactions are possible, e.g. the source service
adds its sensor class and instance to a store service (at a period
matching the sensor reading update) so the retrieval by the sink
service can use the store service’s data for that node and not
require additional transmission to the original source node.

V. IMPLEMENTATION

A. HPP Implementation
This section discusses the design and implementation issues

encountered in an initial implementation using the CIM
information model for sensor objects and storing this data in
HBase. The implementation in ‘C’ includes the Data Model
Service, Object Space and Local Instrumentation Layers
shown in Figure 1 and a DM_SINK_SRV service written in
Java to integrate with HBase. The ‘C’ code was implemented
initially on Linux, using the hpp_service abstraction on top of
the hpp channel abstraction to hide the specific network layer
details. Testing was done using Linux based source nodes
sending hpp messages to transfer their classes and instances to
a specified number of remote nodes using a small number of
functions, as the following code is all that is required for a
service to start receiving messages from other services:

 rv = hpp_endpoint_check(endpoint_ptr);

if (rv == 0) {
 channel_ptr = hpp_endpoint_accept(endpoint_ptr);
} else if (rv > 0) {
 hpp_endpoint_get_messages(endpoint_ptr);
} // timed out with no data, so loop again

The Linux code was then ported to Contiki running on a

Sky WSN mote (emulated in Cooja), using the CoAP
implementation. This implementation created objects and
added them to the object space at different times as the node
started up (and added dynamically later), e.g. the DM service
class and instance objects were created at the start of the
process, followed by the node class and instance and the local
instrumented objects for led and temperature sensor. This
showed the architecture and its abstractions worked across
Linux and constrained nodes.

B. Data Model Service Layer
The initial Contiki implementation includes a number of

custom CoAP "resources" on top of the data model layer, using
the object space. For example, a DM_SOURCE_SRV service
and node objects were implemented as key value pair objects
be sent to another node such as a DM_STORE_SRV. Also, a
CoAP resource was implemented for the creation of HPP

objects dynamically. Classes and instances for red/blue/green
leds, temperature sensor and node, using a subset of attributes
from the CIM object, were also implemented. The following
pseudo-code (not including error code) shows the service
adding its own service class template and initialising its role(s):

uchar dm_register_dm_service(objectAttr_t *template_ptr,

objectAttr_t *inst_ptr, objectAttr_t *inst_key_ptr) {

 if (dm_srv_class_hdl == 0)
 dm_srv_class_hdl = dm_add_service_class(

 &DMServiceTemplate,
 DM_SERVICE_CLASSNAME);

 hdl = dm_add_instance(…..);

 if (service_role || DM_SOURCE_SRV) {
 dm_source_init(); // initialise my local instrumentation (li)
 } // objectswith object store
 if (service_role || DM_SINK_SRV) {

 dm_sink_init(); // add objects we are interested in to
 } // object space on remote peers
 if (service_role || DM_STORE_SRV) {
 dm_store_init(); // set up support for holding
 } //instrumentation objects from peers
 return (0);
}

The data model layer provides support functions on top of
the object library; dm_initialise() and dm_add_class(),
dm_add_instance(), dm_remove_instance() for local or remote
sensor classes/instances. Retrieving object instances is done by
dm_get_instance(inst_handle) or dm_find_instance(), which
uses key values or particular attribute values according to the
matching specified. Matching is implemented in the data model
layer and not the object library (the contents of objects are
transparent to it). A hpp Add message is sent to a remote node
to add a class or instance, with the remote node calling
setupTemplate() to process the class attributes received and
then dm_add_class() or calling dm_add_instance() with the
received instance attributes.

C. Local Instrumentation Layer
Locally instrumented data is implemented using an

li_class_property for each property and an li_inst_property
with the value. This per property approach aligns with the
hardware/vendor specific implementations to access particular
readings or data, e.g. to access sensor data by reading a value
from a register or an API call like get_sensor_reading(). The
li_class_property structure does not make any assumption
about the object it is to be put in (it could appear in more than
one) and can be combined into different classes for particular
information models or be added into tables or key value stores
such as HBase. A node’s local instrumentation (li) classes and
instances are added to its local object store and optionally
converted into key value pairs for adding to other nodes.

Key and non-key properties are treated separately as many
information models use keys to identify groups of data (rows in
SNMP or HBase or object instances in CIM), but also because

550

resource constrained devices often set keys when the class is
created and can be allocated then, whereas non-key data in an
instance changes and may be read by a dynamic getter function.

D. HPP Integrated Erbium-CoAP Implementation on Contiki
The Linux implementations of the local instrumentation (li)

layer, data model and object space, supporting libraries
(memory utilities, doubly linked list, hash, lease) and the
message building parts of the hpp protocol have been ported to
Contiki as part of the pre-existing erbium-REST
implementation example [9]. This approach allowed these
items to be tested on hardware with a supporting REST
infrastructure and for the port to use existing Contiki libraries.
The code samples below show the integration itself was
straightforward. The hpp message payload was simply added as
CoAP payload using the call REST.set_response_payload(). It
is expected that adding the hpp channel abstraction on top of
the existing Contiki networking stack will not be difficult. The
additional code required in Contiki compared to Linux
consisted of:
• A Contiki call to initialize hpp_element. The simple call

service_hdl = service_initialise(); was added to the Contiki
main PROCESS to call the initialize code in the Linux
hpp_service daemon to set up the service and node objects.

• Integrating with the REST code. This consisted of code to
add the resource into the erbium resource handling list
rest_activate_resource(&resource_hppnode) and the code
to implement that resource. The CoAP resources were
accessed via URLs using a suffix of hpp/[classname] and
the node responded with the properties implemented in
that hpp object as key value pairs in the CoAP payload,
using multiple CoAP buffers. A RESOURCE macro is
used to define a CoAP resource and the CoAP verbs such
as get or put it handles, with a corresponding function to
implement it called resource-name_handler. The handler
below for the node object returns the node instance from
the object space when queried over CoAP:

void hppnode_handler(…) {
 object_t *instObj_ptr = NULL;
 instObj_ptr = dm_find_instance(NODE_CLASS);
 hpp_send_object_resp(instObj_ptr, response, buffer);
}

• Adding a Resource for Hpp Objects. This allowed a URI
like /nodeAddr/hpp/object?hdl=x to select an object by
the handle allocated when it was created in the object
space or to walk through the available objects, as shown
by the following handler:

void hppobject_handler(…) {
 len = REST.get_query_variable(request, "hdl", &chdl);
 instObj_ptr = dm_find_object_by_handle(hdl);
 hpp_send_object_resp(instObj_ptr, response, buffer);
}

• Integrating with the Contiki hardware abstractions. This
pseudo-code shows the li layer code wrapping the Contiki
led calls and is called by a resource handler to set a led:

li_mote_method(int method_cap, int inst_id, int setting) {
uint8_t led = (uint8_t)inst_id;
if (method_cap == MOTE_CAP_LED_SET)
 if (setting == MOTE_LED_ON)
 leds_on(led); // Removed leds_off, leds_toggle code
}

E. Integration of Data From Contiki Based Node with HBase
We created a HBase table for each hpp class with a row for

each instance. The tables have two column families named
"key attributes" and "attributes" and a column family qualifier
for each attribute. A row key consists of the hpp object’s key
attributes, node id and a timestamp.

A Java CoAP client (a DM_SINK_SRV) was written that
connected to the desired WSN node via a socket to the CoAP
Server on the Contiki rpl border router. It built a COAPPacket
using COAPPacket(), called the serialize() method and sent it
using the COAP libraries. It then passed the reply data and the
HBaseConfiguration object it had created to writeToHBase().

The code extract below shows writeToHBase(). It assumes
the table has already been created by an earlier hpp command
to add the class and shows how the received hpp data as key
value pairs is processed and written as a row to the HBase table
for that class:

public static void writeToHBase(Configuration conf,
 String tableName, String hppData) {

 Map<String, String> keyKvs = getKeyMap(hppData);
 Map<String, String> attrKvs = getAttrMap(hppData);
 HBase admin = new HBaseAdmin(conf);
 HTable table = new HTable(conf, tableName);
 String rowKey = createRowKey(keyKvs);
 Put put = new Put(Bytes.toBytes(rowKey));
 // Add hpp data to column families
 addMapToHBasePut(put, keyKvs, "key attributes");
 addMapToHBasePut(put, attrKvs, "attributes");
 table.put(put);
 admin.close();
}

VI. EVALUATION OF IMPLEMENTATION
The initial implementation is evaluated in this section in

terms of the abstractions used, the ability to map properties to
objects or tables, HBase integration, the value of the initial
Linux implementation and its memory use. It is planned to
perform more objective tests in defined scenarios.

1) Abstractions
Evaluating abstractions can be done by ensuring that “end-

user” and “WSN geek” are catered for [6]. The “end-user” is a
domain expert concerned with using the WSN data and not
with the network/node specifics, which the “WSN geek” is
concerned with. We have shown examples where the end user
is able to access the data simply with known CoAP Resources
or objects or from the HBase store. The “WSN geek” has been
provided with a cross-platform architecture using an object

551

space and data model layer with a local instrumentation layer
for incorporating node specific functionality and capabilities.
The code extracts show that these items made it straightforward
for a node to implement objects from a rich information model
on both a Linux and Contiki platform and to map to CoAP
Resources. This also meets the design goal of the same
abstractions giving a generic information infrastructure across
heterogeneous platforms of different capability, even when
used with delivery protocols other than the hpp protocol. The
object space was also shown to easily map objects to specific
CoAP REST resources and the hppobj resource above showed
it also easily supported discovery and searches across the
implemented objects.

The value of some of the service abstractions has been
shown with a Java DM_SINK_SRV service that receives data
as hpp key value pairs from Contiki and stores that data in
HBase and also a DM_SOURCE_SRV that adds its classes and
instances to specific remote nodes (via hpp add directly or in a
CoAP PUT payload).

2) Object and Property Node Mapping
The sample code has shown that an attribute based

implementation of the objects fits naturally with the low level
specifics of the nodes and maps to CoAP REST resources, such
as led and sensors and groupings of individual attributes, such
as proposed in the IP for Smart Objects (IPSO) Application
Framework [27]. The implementation showed that the
approach of having a class object as a template with attribute
descriptions and its instance object with attribute values was
successful in three ways; it allowed selective use of attributes
from CIM classes on constrained nodes (important for the
many strings used in objects such as CIM_NumericSensor), it
supported a set of abstractions in a COAP/REST environment
and also allowed straightforward mapping of these attributes
into a HBase store.

3) HBase Integration
In terms of data mapping, the hpp objects mapped cleanly

to HBase tables and the use of a property per attribute mapped
well to HBase columns. Furthermore, the approach of separate
key and non-key properties could be mapped to separate HBase
column families, allowing a HBase scan across all rows of key
attributes as well as non-key attributes, rather than only being
able to use the key attributes as instance identifiers. The hpp
message primitives also mapped well to HBase functionality,
e.g. the two column families defined for attributes allowed
adding new objects with their attributes by creating a table (and
its columns), which can be done dynamically on receiving a
hpp Add message with the template class. Similarly, a hpp Add
of an instance (at a given time) will result in a new row in the
object’s table. The architecture allowed hpp data on the node to
be transported and stored in HBase, using CoAP, requiring no
application level proxy and only requiring a proxy at the
network level (the rpl border gateway).

4) Linux Implementation and Code Porting Issues
The approach of initially implementing on Linux allowed

the design to be refined and the code to be debugged and tested
more easily and rapidly, using the more advanced Linux
development and debug environments. It also provided services

on Linux that could integrate easily with those on constrained
nodes. These benefits came at little cost in terms of the
subsequent port to Contiki as most of the code did not require
any changes, given the availability of standard C libraries in
Contiki. The main code changes were to provide a revised
Makefile, a simplified implementation of gettimeofday() used
for object leases and to change the type of function parameters
and structure members to reduce size (e.g. from int to char).

5) Memory Usage
It was necessary to remove parts of the erbium-CoAP code

to create space for the hpp code. Retaining parts of the erbium
and CoAP stack did allow using the CoAP transport and the
Copper Browser plugin for testing. A more complete
integration with CoAP would reduce the memory footprint and
allow more hpp functionality to be included.

TABLE I. MEMORY USAGE OF REST EXAMPLE

 Original Erbium REST
Code Erbium + HPP Code

 Code
(%) Data(%) Total

(%)
Code
(%) Data(%) Total

(%)

libc 8 0 7 9 0 8

core 9 3 8 7 2 6

Network 50 74 53 50 63 52

Platform 12 3 10 10 4 9

coap 17 17 17 11 12 11

rest 5 3 5 2 4 2

hpp n/a n/a n/a 11 15 12

Table 1 shows the percentages (both applications varied by

a few 100 bytes) of the available memory (10K RAM, 48K
Flash) used for particular sections in the original er-rest-
example application and for the modified application with hpp.
The hpp application included resources for the hpp led and
objects for Service, node and reduced CIM_AlarmDevice and
CIM_NumericSensor. The REST engine and CoAP use a
small amount of memory compared to networking, which is
equivalent to that for the platform and core. It can be seen that
the code and data usage of hpp is equivalent to that of CoAP,
so that it is feasible for a constrained device.

VII. CONCLUSION
We have proposed a set of requirements for an architecture

that reflects the characteristics of WSNs and would allow
WSNs to be more widely deployed and more easily integrated
with applications, including Big Data services to collect and
analyse their data. We have proposed a holistic architecture
with defined abstractions, software layers, a loosely coupled
object space and a simple and flexible protocol. These
abstractions also enabled the approach of developing the code
initially on Linux and then porting to Contiki. We have also
evaluated the architecture based on an initial implementation.

The first requirement has been met by showing that the
architecture and abstractions can be relatively easily
implemented on both constrained WSN nodes with acceptable

552

memory use and are also suitable for more capable devices and
applications, e.g. on Linux. The second requirement has been
met by providing abstractions for the basic operations of a
sensor node and the services using it, e.g. the local
instrumentation layer handled the underlying Contiki hardware
libraries and the data model layer handled the REST resources.
The third requirement has been met with the service roles,
although only the source, sink and store roles have been
implemented at this point. The fourth requirement has been met
by showing the exchange of sensor information from the node
to CoAP to HBase independent of the underlying technology.

Further work is planned to port the hpp channel abstraction
to Contiki and to investigate further integration of hpp with the
CoAP transport, to implement the other service roles in the
architecture, as well as investigating the use of service
capabilities/interests, particularly in terms of the interaction
with Big Data services in the cloud to perform processing. It is
also planned to investigate support for P2P overlays and the use
of Distributed Hash Tables (DHT). It is also planned to
perform larger scale tests with more nodes to verify the
architecture meets the fifth requirement of being able to scale
from small static networks to larger dynamic, heterogeneous
environments and to show the benefits of the characteristics of
the P2P and tuple concepts in the architecture (high scalability,
redundancy, fault-tolerance and self-management).

In summary, this architecture has been shown to enable a
holistic, high-level approach on constrained and powerful
platforms and enable a straightforward integration with Contiki
and HBase to store sensor data, requiring only simple message
reformats without requiring semantic changes or application
proxies in an infrastructure of nodes and services.

REFERENCES
[1] N. Kushalnagar, “IPv6 over Low-Power Wireless Personal Area

Networks (6LoWPANs): Overview, Assumptions, Problem
Statement, and Goals”, RFC 4919

[2] S. Haller, “The Things in the Internet of Things”, Internet of
Things Conference 2010, http://www.iot2010.org/

[3] D.A Reed, D.D. Ganno., J.R. Larus., "Imagining the Future:
Thoughts on Computing," Computer, vol. 45, no. 1, pp. 25-30,
Jan. 2012.

[4] D. Laney, “Application Delivery Strategies”,
http://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-
Data-Management-Controlling-Data-Volume-Velocity-and-
Variety.pdf

[5] A. Zaslavsky, C. Perera, D. Georgakopoulos, “Sensing as a
Service and Big Data”, Proc. of International Conference on
Advances in Cloud Computing, July 2012.

[6] L. Mottola and G. P. Picco. “Programming Wireless Sensor
Networks: Fundamental Concepts and State of the Art. ACM
Computing Surveys, 2010.

[7] Z. Shelby et al, “Constrained Application Protocol (CoAP)”,
Internet-Draft. draft-ietf-core-coap-12.

[8] R. Fielding “Architectural Styles and the Design of Network-
based Software Architectures”, Doctoral dissertation (2000),

[9] M. Kovatsch, S. Duquennoy, A. Dunkels, “A Low Power CoAP
for Contiki”, IEEE 8th International Conference on Mobile
Adhoc and Sensor Systems (MASS), 2011

[10] P. Mell, T. Grance, “The NIST Definition of Cloud Computing”,
csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[11] M. Yuriyama and T. Kushida, "Sensor-Cloud Infrastructure -
Physical Sensor Management with Virtualized Sensors on Cloud
Computing,", Sept. 2010, pp. 1-8.

[12] G.C. Fox, S. Kamburugamuve, R.D. Hartman, “Architecture
and Measured Characteristics of a Cloud Based Internet of
Things API”, International Conference on Collaboration
Technologies and Systems (CTS), 2012,

[13] J. Melchor, M. Fukuda,. “A Design of Flexible Data Channels
for Sensor-Cloud Integration”, Proc. of the 2011International
Conference on Systems Engineering, ICSENG2011

[14] M. Hassan, B. Song., E-N. Huh, “A Framework of Sensor -
Cloud Integration Opportunities and Challenges”, Proc. of the
3rd International Conference on Ubiquitous Information
Management and Communication, ICUIMC '09

[15] C. Jardak, J. Riihijärvi, F. Oldewurtel, P. Mähönen, “Parallel
Processing of Data from Very Large-Scale Wireless Sensor
Networks”, Proc. of the 19th ACM International Symposium on
High Performance Distributed Computing, HPDC10

[16] G. Picco, “Software Engineering and Wireless Sensor Networks:
Happy Marriage or Consensual Divorce?”, FoSER 2010.

[17] M. Weiser “The computer for the twenty-first century”,
Scientific American, September 1991 (reprinted in IEEE
Pervasive Computing, Jan-Mar 2002)

[18] S. R. Madden, ‘The Design and Evaluation of a Query
Processing Architecture for Sensor Networks”, Ph.D. Thesis.
UC Berkeley. Fall, 2003

[19] T. Hasiotis et al, “Sensation: A Middleware Integration Platform
for Pervasive Applications in Wireless Sensor Networks”, 2nd
European Workshop on Wireless Sensor Networks (EWSN),
Istanbul, Turkey, January 2005.

[20] A. Boulis and M. B. Srivastava, "A Framework for Efficient and
Programmable Sensor Networks", In Proc. of OPENARCH
2002, New York, June, 2002.

[21] C. Intanagonwiwat, R. Govinden, D. Estrin, J. Heidemann, F.
Silva, “Directed Diffusion for Wireless Sensor Networking”,
IEEE/ACM Transactions on Networking, Vol 11, No. 1,
February 2003

[22] P. Costa, L. Mottola, A. L. Murphy, and G. P. Picco.
“Programming wireless sensor networks with the TeenyLIME
middleware”, Proc. of the 8th Int. Middleware Conf., 2007

[23] D. Gelernter, “Generative communication in Linda”, ACM
Transactions on Programming Languages and Systems
(TOPLAS), Volume 7 Issue 1, Jan. 1985

[24] M. Ceriotti et al “Monitoring heritage buildings with wireless
sensor networks: The Torre Aquila deployment”, Proc. of the
8th Int. Conf. On Information Processing in Sensor Networks
(IPSN), 2009.

[25] X. Le et al , “Secured WSN-integrated Cloud Computing for u-
Life Care”, IEEE CCNC 2010.

[26] D. Clark et al, “Making the world (of communications) a
different place.”, ACM SIGCOMM CCR, 35(3):91–96, 2005.

[27] Z. Shelby et al, “The IPSO Application Framework”, Internet-
Draft. draft-ipso-app-framework-04, August 2012

553

