
Prog Artif Intell (2012) 1:183–191
DOI 10.1007/s13748-012-0016-8

REGULAR PAPER

Double multiagent architecture for dynamic triage of victims
in emergency scenarios

Estanislao Mercadal · Sergi Robles · Ramon Martí ·
Cormac J. Sreenan · Joan Borrell

Received: 25 July 2011 / Accepted: 20 January 2012 / Published online: 16 May 2012
© Springer-Verlag 2012

Abstract This paper introduces a double multiagent archi-
tecture allowing the triage of victims in emergency scenarios
and the automatic update of their medical condition. Gather-
ing updated information about the medical condition of vic-
tims is critical for designing an optimal evacuation strategy
that minimizes the number of casualties in the aftermath of
an emergency. The proposed scheme, currently under devel-
opment, combines Wireless Sensor Networks (WSN), an
Electronic Triage Tag and a double multiagent system
(Agilla-JADE) to achieve a low cost, no infrastructure-based,
efficient system. Initial results of the WSN roaming done by
Agilla agents are presented.

Keywords Mobile agents · Wsn · Emergency scenarios ·
Multiagent architecture

E. Mercadal (B) · S. Robles · R. Martí · J. Borrell
Departament of Information and Communications Engineering,
Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès,
Spain
e-mail: emercadal@deic.uab.cat

S. Robles
e-mail: srobles@deic.uab.cat

R. Martí
e-mail: rmarti@deic.uab.cat

J. Borrell
e-mail: jborrell@deic.uab.cat

C. J. Sreenan
Departament of Computer Science, University College Cork,
Cork, Ireland
e-mail: cjs@cs.ucc.ie

1 Introduction

The majority of victims whose life is saved after a mass casu-
alty incident (MCI) are treated in the first moments of the
incident. At that point only a reduced number of resources
are available, and is essential to coordinate efforts to evacu-
ate and urgently treat the most harmed yet curable victims.
Therefore, the accurate triaging of victims according to their
medical status, done by trained personnel (doctors, nurses,
paramedical), is of capital importance. Up to now this triage
has been done using a cardboard tag (Fig. 1), which iden-
tifies victims’ injuries severity using a color code, as well
as including other basic medical information. The informa-
tion written in the tag is decided following a standard triage
method such as MTS [11] or START [20].

The efficiency of these scenarios can be improved using
Information and Communication Technologies. However,
there are some limitations that have to be considered. Emer-
gency personnel, for instance, need to act quickly and will
not agree to use a complex system that could slow down
its job. Another limitation is the need to rely on some com-
munications system, existing local infrastructure cannot be
considered due to damages or for being out of order.

Mobile agents [3] are an interesting technology which
can considerably help in this type of scenarios. Mobile
Agent based Electronic Triage Tag (MAETT) [12] is an
attractive application using mobile agents centered in add-
ing technology to triaging while keeping the budget low.
Using a touch screen handheld device, equipped with a GPS
receiver, a WiFi interface and a JADE [2] mobile agent plat-
form, a mobile agent is created carrying the START color
code, GPS position and victim’s information when the tri-
aging is performed. The traditional cardboard triage tag is
not substituted by this method, but is also placed on the
victim.

123



184 Prog Artif Intell (2012) 1:183–191

The mobile agent will then try to reach the emergency
coordination center leaping from handheld to handheld,
being stored in a device carried by the emergency person-
nel for a while, until an appropriate handheld is at reach. The
network created to communicate handhelds goes beyond ad
hoc or MANET possibilities, for no permanent communi-
cation is required from the source to the destination. The
routing protocol uses the estimated time to return (TTR) to
the coordination center of the handheld device bearer.

The MAETT approach works well and the information
about victims is available to the emergency coordination
center (ECC) at a low cost. Then this information is used
to plan the evacuation of the victims. Though, changes in
victims’ medical conditions are never informed to the emer-
gency coordination center, and they can be of great impor-
tance for the accurate planning of victims’ evacuation.
A good solution for this is not trivial; the chances for field
personnel of finding a victim are much higher than the other
way around, but the new information is generated by the vic-
tims and not by the field personnel carrying the handheld
devices.

Our intended goal is to create a new dynamic electronic
triage tag system where any change in any victim’s medical
state will be easily communicated to the ECC. To achieve this
dynamism, we place wireless nodes equipped with medical
sensors to every triaged victim, maintaining the triage tag
of the MAETT scenario. This wireless nodes run Agilla [6]
a platform for mobile agents with communication possibili-
ties with other nodes pertaining to the same Wireless Sensor
Network (WSN) [4]. The sensor nodes monitor victims’ vital
signs and, if in range, communicate any significant change
to nearby emergency personnel. The nodes in the WSN are
very resource limited, thus different communication strate-
gies than those of the handhelds carried by the emergency
personnel, and an interface to connect both devices are
required.

To increase the probability of the information being cor-
rectly sent from a node in the WSN to a handheld device, a
mechanism based on Agilla mobile agents is currently under
development, thus exploring all the nodes of the WSN and
fusing all the information about changes on victims’ status.

As a result, any node in the WSN will be able to commu-
nicate these changes as a whole to any JADE platform (triage
or rescue member) that moves into the wireless coverage area
of any node in the WSN.

To minimize the cost of exploring the WSN a genetic algo-
rithm (GA)-based approach [13] was proposed in our archi-
tecture [14]. This paper extends [14] in two ways. First, we
show the analysis of using GAs [13], just to conclude that it
is too costly to be used in our scenario. Second, we show the
results of using an optimized version of Depth-First Search
(DFS) to compute the path used by Agilla agents to per-
form the desired data fusion. DFS is the classic algorithm to

compute the spanning tree of a graph when the number of
vertices is small. It is fully described in [8].

JADE mobile agents will act as data mules [19], which
will carry the initial classification of the victims and every
important change in the medical status, gathered by the Agilla
mobile agents in every independent WSN, to the emergency
coordination center.

In Sect. 2, we describe MAETT and Agilla agents as the
starting point of our architecture and scenario, then in Sect. 3
we present the very architecture and how it works, to then
show the experimental evaluation of the algorithms proposed
to roam the WSN in Sect. 4. Finally, Sect. 5 concludes the
paper.

2 Background

2.1 MAETT

Mobile Agent Electronic Triage Tag (MAETT) [12] is a
system focused on the triage of victims of Mass Casualty
Incidents (MCI), to provide early resource allocation during
emergencies when no network infrastructure is available. In
[12] MAETT is compared to other triaging systems, agent
based or not. MAETT is neither intended to be a comprehen-
sive management system for emergency situations, such as
[17], nor a decision support system such as [5,18]. MAETT
is closer to the search and rescue subsystem of [21], although
based on software agents instead of robotics. For additional
information about multi-agent based disaster management
systems see e.g. [1].

The foundation of MAETT is mobile agent technology [3],
which allows information to be directly transported from ter-
minal to neighbor terminal regardless of the status of the rest
of the network at that particular time. Handheld devices run
an execution environment for agents, the platform, where
mobile agents can be created, executed and forwarded to
other terminals, the agents themselves are who decide the
route to follow depending upon the available information on
the neighbors.

The main actors of the system are the victims, the triage
personnel, and the rescue teams (see scenario in Fig. 1). Vic-
tims are usually scattered over an arbitrarily large area of
emergency and the triage personnel scour all this area look-
ing for victims and triage them according to standard meth-
ods. The result of this triage is written in a physical tag and
placed visibly on the victim. Finally, the rescue teams col-
lect all the victims, prioritizing depending on triage results.
The Emergency Coordination Center (ECC) coordinates all
actions. Triage personnel, rescue teams and the ECC have
wireless devices with a JADE mobile agent platform and a
GPS receiver.

123



Prog Artif Intell (2012) 1:183–191 185

Fig. 1 MAETT triaging scenario showing the classical cardboard tri-
age tags

Triage personnel leave the ECC, and have an estimation
on when they will get back, the time to return (TTR). When
a victim is found, they use the standard START method [20]
and place a cardboard triage tag (see Fig. 1) on the neck of
the victim with their evaluation written on it. The tag has an
integrated RFID. At the same time, an agent is created con-
taining the information in the tag plus the GPS position of
the victim and the RFID of the tag. All this information will
be used later in the ECC to optimize the route of the rescue
teams. This agent is transmitted to neighbor devices only if
the bearer has a lesser TTR. This is to make sure that moving
the information is never going to make it arrive later. Conse-
quently, all handheld devices carried by triage personnel are
used to create agents with information about found victims,
and also to forward agents corresponding to other victims.
When agents arrive to the ECC, the ECC send the rescue
teams with a detailed schedule of the route based on the GPS
position of victims as well as their medical condition.

2.2 Wireless sensor networks and Agilla mobile agent
middleware

A Wireless Sensor Network (WSN) [4] is a specific type of
ad hoc networks, built using wireless radio communication.
It consists of sensor nodes collecting particular measures,
i.e. temperature or blood pressure, and processing elements,
which collect these measures for further processing. Usually
sensor networks are strongly resource-restricted in terms of
communication, processing and storage capabilities, and in
terms of available energy. For the most part, all sensor nodes
deliver their data to a base station or sink of data. This sink
can be part of the network, or be external, accessed trough a
gateway to other networks.

Application examples of WSNs [4,6] are increasing, and
include, among others, emergency operations, habitat mon-
itoring, precision agriculture, home automation and health
care or logistics. Initial applications within WSNs were static,
i.e. all the nodes run statically installed software loaded prior
to their deployment. Nowadays, different systems have been
developed to allow more adaptable WSN applications (see
[6] for an excellent survey of such systems), from mech-
anisms that allow a total or partial reprogramming of the
nodes, to middlewares that allow the execution of several
mobile agents inside each node, allowing application self-
adaptability. Among the different mobile agent middlewares
proposed for WSNs, Agilla [6] is the first one deployed inside
real WSNs.

Agilla provides a programming model in which applica-
tions consist of evolving communities of agents that share a
WSN. Agents can dynamically enter and exit the WSN, can
autonomously clone and migrate themselves in response to
environmental changes, and can maintain a global coordina-
tion through a tuple space, a type of shared memory accessed
via pattern-matching that enables a decoupled style of com-
munication. The size of the tuple space is up to 48 bytes in
each node. Agilla was implemented on top of TinyOS WSN
operating system [7], and experimentally evaluated on sev-
eral real WSNs, for instance those consisting of TelosB [16]
nodes. A basic Agilla installation in a TelosB node takes up
3866 bytes out of 10kB of RAM and 45308 default bytes out
of 48kB of ROM.

3 Double multiagent architecture to provide dynamism
to MAETT

Despite being two different agent technologies, JADE and
Agilla can coexist and share information to build a more com-
plex agent system. Albeit agents themselves cannot migrate
transparently between the two platforms, we show that Ag-
illa-JADE cooperation is feasible.

In our solution, we use Agilla to continuously monitor
Mass Casualty Incident (MCI) victims inside WSNs and
JADE to carry the monitored data to the Emergency Coor-
dination Center (ECC), introducing dynamism to MAETT.
We take advantage of the communication between both tech-
nologies to share victim information and route details, thus
improving the efficiency of the triaging system.

We extend MAETT scheme (Fig. 1) by adding a wireless
human body monitoring device to each victim, for exam-
ple that of Fig. 2a, a TelosB compatible node manufactured
by Maxfor (http://maxfor.co.kr), thus creating a WSN among
neighboring victims, which we can use to dynamically update
the medical status of every victim.

To communicate the WSN and the handheld devices of
triage or rescue members we also need these members carry

123

http://maxfor.co.kr


186 Prog Artif Intell (2012) 1:183–191

Fig. 2 The different devices of
the scenario

a WSN node (Fig. 2b) attached to their handheld device, also
a TelosB compatible node from Maxfor.

The new double multiagent architecture can be seen in
Fig. 3, where black smileys correspond to Agilla victim mon-
itoring agents and colored ones to JADE agents found in
MAETT.

3.1 WSN set up and operation

In the first run of the triage personnel, every victim receives
the classical triage tag, and is also equipped with a wire-
less body monitoring sensor node. Inside this node resides
an Agilla agent (Victim agent) with the specific data of the
patient (Victim ID and Medical Condition). Each of this
Victim agents supervise the associated victim health con-
stants maintaining an up-to-date log with his/her medical
condition. In turn, the wireless body monitoring sensor node
is identified by a two-dimensional coordinate (WId, AId), the
first one (WId) indicates the WSN it pertains, and the second
one (AId) identifies the node into the network.

As every nearby victim is both paper tagged and electron-
ically tagged, neighboring wireless nodes belonging to the
same triage member wirelessly connect creating a growing
WSN of victims.

When every victim in the vicinity is tagged and every body
sensor node monitors its own victim, the triage team member
ends the creation of his WSN. First of all, the handheld device
starts the calculation of the spanning tree of the graph using
the DFS algorithm [8] (see Sect. 3.2) to obtain an itinerary
to roam the newly created WSN and fetch the updates of
every victim’s medical condition. A roaming agent (Traveler
agent) with this computed itinerary is then injected inside
the last node of the WSN. Traveler agent gets and sets the
differences in the state on every node.

When a new rescue or triage team member approaches
the WSN, and their handheld device contacts a node in the
WSN, the sensor node attached to the handheld automatically
identifies itself as the sink node. Then an Agilla mobile agent
(Extractor agent) containing the information of every victim
is sent to the node on the handheld to flush all the gathered

data to a JADE agent (Courier agent). As every node of the
WSN has the most up-to-date state as possible, any member
of its members in direct contact with the sink node can indis-
tinctly output the information. The handheld device routes
Courier to the ECC, as was done in MAETT.

To use any node of the WSN to flush the status of every
victim to the handheld device, every node must maintain a
record of every other node status. This status is identified
for each victim by his concrete medical condition, the ID
of the victim, and a modification flag. The Traveler agent, in
communication with each Victim agent continuously updates
this information maintaining an up-to-date record of every
victim.

3.2 Roaming the whole WSN

The problem of visiting every node avoiding repetition and
optimizing distance is deeply studied in graph theory, also
known as the Traveling Salesman Problem (TSP), and is
known to be NP Complete [15] even in the Euclidean plane.

The case of covering all the nodes of a WSN can be seen
as a particular case of the TSP, with the particularity of pre-
tending to also optimize the energy consumption, and is also
proven to be NP Complete [13,23].

Genetic algorithms are being used to solve NP-Complete
problems since the early 90s [9] and have been proved useful
to efficiently solve the concrete particular of the TSP [10].

In our handheld device, with its restrictions, both of time
and computation power, is not feasible to calculate the opti-
mal route for a problem of this kind. Thus, instead of using
a more complex algorithm, e.g. those of [22], we tried a
highly studied genetic algorithm approximation [13], which
is proved to offer good enough solutions.

The chosen genetic algorithm starts creating an initial pop-
ulation of random paths that cover the network. Then, from
that set of paths only those whose number of hops to cover
the network is smaller or equal to the time remaining to meet
the time deadline (maximum number of nodes per path) are
selected. After that, a new generation is generated by select-
ing x individuals to be crossed. A subset of the paths of two

123



Prog Artif Intell (2012) 1:183–191 187

Fig. 3 Dynamic MAETT triaging scenario

individuals are crossed to create a new individual. Finally, all
solutions are evaluated and sorted from the minimum to the
maximum. We adapted this genetic algorithm not to calculate
the minimum route to a node, but to determine an efficient
way to cover the whole WSN.

Massaguer [13] worked well (see Sect. 4) in scenarios
where all the nodes (vertices) of the network (graph) were
connected. When this premise is not fulfilled, the cost of
generating valid individuals is too high to be used with our
handheld device. Indeed, in scenarios where the network is
partially connected, it is difficult to find good individuals
after every iteration, due to the high cost of finding a valid
route for the graph in the crossing and mutation phases of the
genetic algorithm.

In such scenarios, another method to compute the path
for our mobile agent was needed. Our chosen solution is the
Depth-First Search (DFS) algorithm [8], which computes the
spanning tree of a given graph. For us, the returned tree is
the path the Agilla agent will use to visit all the nodes of the
network.

Note that the computation of the DFS algorithm in the
handheld device is possible due to the following facts:

1. The triage personnel saves the topology of the WSN
while tagging victims.

2. The number of nodes is limited. Both to speed up the
route calculation process and to lighten the medical per-
sonnel bags. Notice that every health monitoring sensor
weights about 70 g including the required two 1.5V bat-
teries. Assuming that the triaging personnel carries the
handheld device and the paper tags, they may agree to
carry the extra weight of 20–25 sensor nodes, that is, the
weight of a small laptop (i.e. ∼1.5 kg).

Moreover, to restrict the itinerary to our concrete needs we
established three limitations to the DFS algorithm to return a

valid solution for our network. The first of them is the selec-
tion of the initial node, which is the last victim a triaging
personnel member tags. This is done for the triage member
to not have to move to the best possible starting node, but
inject the node where he is.

The second limitation is that the itinerary does not need
to be cyclic, that is, does not have to connect the last node
to the first node. We added this restriction firstly to ease the
computation of a solution, and secondly because what we
want is not to reach a specific node, but to have the sensor
readings of every one of them. Thus, we can just follow the
same path backwards and return to the first node with it.

The third and final restriction is about the amount of time
the triaging member will wait for a good itinerary to show up.
In our handheld devices Nokia N810, a valid DFS solution
appears in a short period of time, less than a second, but with
little more time (∼20s) we can get a better result in some
cases, see Sect. 4. We established a maximum waiting time
of 30s, which gives enough time to compute a good solution,
and is short enough for the triaging member to wait for.

Likewise, we defined which are the conditions to deter-
mine if an itinerary is better than another. In our case what
we want to minimize the amount of energy consumed by the
sensor nodes, thus increasing its lifetime. As all the nodes are
up and running sensing victims’ medical conditions, the only
thing we can improve to minimize the energy consumption is
the time spent in the transmissions. To do so, a good approach
can be to minimize the distance an agent has to move to reach
the following node. In doing this, we also reduce the errors
made during the transmission, thus minimizing even more
the amount of time needed for the agent to migrate.

As a final step, the handheld device injects the Traveler
Agilla mobile agent containing the route into the WSN. This
agent then covers the whole network collecting (in cooper-
ation with Victim agents) and informing changes in victim’s
state, thus writing the information of every victim in every
node. The agent keeps doing the same route keeping the vic-
tim’s medical condition up-to-date.

Additionally, if a problem in the communication between
WSN nodes occur, e.g. due to a malfunctioning or broken
node, the Traveler agent has the ability to reroute itself and
find an alternative path to cover the whole WSN. In our case,
the mobile agent tries to move to the next available node in
the WSN. If it is not reachable tries to move to a random
available node.

3.3 WSN maintenance

Another addition that boosts the dynamism of our triaging
method is the possibility to modify an already deployed WSN
such that a victim can be added or removed, while being
added to or removed from the itinerary of the roaming agent.

123



188 Prog Artif Intell (2012) 1:183–191

Using JADE agents and their routes to the ECC, we have an
excellent infrastructure to attain this dynamism.

In every triage, the handheld device of the triage personnel
is also loaded with the position of every node of the WSN,
thus ending up with a full view of the topology of the net-
work. After the computation of DFS, this topology is also
loaded into a JADE agent and routed to the ECC.

On arrival to the ECC, the JADE agent flushes the WSN
topology, which is shared to every other handheld device
deployed in the emergency. Hence if some other triaging
member has to tag or remove a victim in another’s WSN,
he just removes or adds this new victim to the correspond-
ing topology in the handheld device, and calculates a new
itinerary (using DFS) with the modification.

Of course, just as in the first calculation, the new topology
is routed, along with the medical data of the victims in the
WSN, with a JADE agent to the ECC.

3.4 The WSN—handheld device interface

To properly set the interface we had to modify Agilla to
run side-by-side with JADE. Doing so Agilla can obtain the
instance of the running platform and generate an agent there.
Then, we modified Agilla’s AgentInjector to switch on JADE
when invoked, this way we are sure that from that moment
on, every received agent will be able to generate a JADE
agent. The agent which migrates or sends data to the hand-
held device, the one to be encapsulated into a JADE agent,
needs a special portion of code permitting the communication
with the Injector at the other side of the USB interface. This
code moves or sends the data to a special address pertaining
to the Injector in the handheld device.

Our test platform (Nokia N810 with the Maemo OS (Dia-
blo 5.2008.43.7)) did not come with the needed drivers for
the mote to work. Thus, we had to recompile the stock ker-
nel adding the appropriate drivers, and load them into the
device. Moreover, albeit the device supports host mode USB,
not every USB cable is prepared to notify the host device of
this requirement, thus, we had to explicitly tell our test plat-
form to switch itself to host mode. Once our test platform was
plugged and the drivers loaded, the system recognized a new
USB device, but complained about not being able to access it.
The problem was related to the power the device was receiv-
ing not being sufficient to maintain it operating. We had to
add a rule to the udev daemon of the handheld device indi-
cating that this particular device needs more power than the
allocated by default.

4 Experimental evaluation

We tested the genetic algorithm of [13] and the DFS algo-
rithm of [8], both with the optimizations described above, in

Table 1 Results for the N810 using the genetic algorithm with a fully
connected graph of jNodes

10 individuals 50 individuals

5N Sc. cost: 16.0755 cost: 15.5693

time: 0.7540 time: 6.0744

10N Sc. cost: 31.5538 cost: 31.3979

time: 2.7115 time: 13.0550

25N Sc. cost1: 68.3264 cost1: 69.5351

time1: 13.2146 time1: 15.0000

cost2: 55.7277 cost2: 59.3514

time2: 30.0000 time2: 30.0000

cost3: 55.8480

time3: 52.9582

50N Sc. cost1: 134.1062 cost1: 115.9869

time1: 15.0000 time1: 15.0000

cost2: 106.7367 cost2: 107.5450

time2: 30.0000 time2: 30.0000

cost3: 102.8928 cost3: 101.5540

time3: 42.7622 time3: 60.0000

our Nokia N810 platform. The goal of our evaluation was to
check if these algorithms were appropriate to compute the
route of our Traveler agent in scenarios where all nodes had
connectivity, and in scenarios where some of the links were
unavailable.

We first tested the genetic algorithm against fully con-
nected, randomly generated graphs. The tests were conducted
with initial populations of 10 and 50 randomly generated
individuals. Generations had a mutation probability of 0.01
and a crossover probability of 0.7.

The first results (see Table 1) with the genetic algorithm
and with fully connected graphs (Fig. 4a, b) showed good
values both in computation time and in path cost (length). In
that table each cost value is the mean of five executions of
the algorithm in our Nokia N810 handheld.

The results show the best solution found for time limits
of 15, 30 and 60 s. In some cases, the best solution is found
before reaching the limit, and in other cases the algorithm is
still computing better solutions when the limit is reached.

As we can see, a solution is found within the 15 s time limit
in a 50 nodes scenario, but executing the algorithm during
some more time until reaching the 30 s limit, an improvement
of approximately 20 % is accomplished while not trespass-
ing the hypothetical time limit established for the medical
personnel to wait during a triaging (30 s).

We also tested the genetic algorithm against not fully con-
nected randomly generated graphs. We used the same con-
figuration as in the previous tests with 10 and 50 randomly
generated individuals, with a mutation probability of 0.01
and a crossover probability of 0.7.

123



Prog Artif Intell (2012) 1:183–191 189

Fig. 4 WSNs solved with the genetic algorithm

Table 2 Results for the N810 using DFS in a partially connected graph

5N1O Sc. 10N1O Sc. 25N3O Sc. 50N3O Sc.

cost: 21.995 cost1: 77.0664 cost1: 78.3977 cost1: 103.3174

time: 0.066 time1: 0.181 time1: 0.102 time1: 0.179

cost2: 68.4044 cost2: 77.5867 cost2: 103.1823

time2: 1.567 time2: 81.448 time2: 135.264

cost3: 54.4441 cost3: 77.3539

time3: 5.351 time3: +300

cost4: 50.2357

time4: 203.782

cost5: 45.0835

time5: +300

In these cases, where there is some obstacle blocking the
communication between any two nodes, the genetic algo-
rithm is not able to obtain a solution in a reasonable period
of time. The cost of validating every individual and maintain-
ing the population constant is so high that it is not feasible
to find a solution to our problem within our established time
limits. Only the validation of the individuals after every gen-
eration lasts longer than the established time limits.

Nonetheless, using DFS [8] we solved this situation and
found good solutions in a small amount of time. Moreover, in
some cases, waiting for the the time limit to end, the solution
improves considerably (see Table 2, where jNkO stands for
j Nodes and k Obstacles).

DFS proved to work well with random scenarios (Table 2),
so we tested it with special scenarios, easily found in actual
catastrophes, for example reflecting a building (Fig. 5a), a
node distribution with one single solution (Fig. 5b), a zone
separated by a wall (Fig. 5c), or a star shaped scenario
(Fig. 5d). The algorithm also performed well in this kind

of scenarios, finding good solutions in reasonable amounts
of time as can be seen in Table 3.

Differently from the genetic algorithm, a new solution
pops out nearly instantly using DFS, and usually is the best
solution we can find, even waiting for the time limit to end. In
the specific scenarios tested, the difference between the first
solution and the next better solution is so small, even inap-
preciable, that waiting for the new solution is, in most cases,
not worthy. First responders have a limited amount of time
to triage the greatest number of victims in a MCI, so having
them waiting for a better solution to appear is not advisable.

In the special cases of the Unique Path (Fig. 5b) and
the Star (Fig. 5d) cases, there is only one possible solution,
and the algorithm finds it almost instantly, as is reflected in
Table 3.

5 Conclusions

The triage stage during the aftermath of an emergency
is critical to minimize the number of casualties. There
are many systems in the bibliography introducing Infor-
mation and Communication Technologies to achieve this,
most times at a high cost or requiring a non-practical
interaction with the system that field personnel refuse
to perform. This paper presents a multiagent architecture
allowing the triage of victims in emergency scenarios and
the automatic update of their medical condition at a low
cost.

In our approach, neighbor victims are automatically
grouped together by placing a wireless sensor node on
each of them monitoring their status. This groups form
a Wireless Sensor Network (WSN). Changes are shared
within the WSN using Agilla mobile agents and a gath-
ering algorithm designed using genetic algorithms. Now,
changes can be communicated to any member of the

123



190 Prog Artif Intell (2012) 1:183–191

Fig. 5 Special interest scenarios

emergency personnel by any node of the group, increas-
ing in this way the probabilities of sending this infor-
mation. From there, a JADE mobile agent will carry the
changes to the coordination center where they will update
old information.

The choice of using genetic algorithms to find a solu-
tion for our problem has been dropped in favor of the DFS
algorithm due to the difficulties of finding good individ-
uals after each iteration in a reasonable amount of time.
DFS offers good enough solutions in a smaller amount
of time, thus making it appropriate for a mass casu-
alty aftermath triaging, where time is of capital impor-
tance.

The results also show that waiting for a better solution is
not always worth, as the benefit obtained when finding the
next better solution is generally so small that the waiting ends
up being misused time.

Although the simulations offered good results in the tested
scenarios, we are now using our solution in real scenarios
with actual wireless nodes, i.e. a real building or an open
rough terrain, to validate the simulated results.

Table 3 Results for the N810 using DFS in special interest scenarios

Building Unique path Wall Star

cost1: 36.5687 cost: 27.3636 cost1: 27.6036 cost: 57.7163

time1: 0.08 time: 0.001 time1: 0.058 time: 0.061

cost2: 36.0348 cost2: 25.6019

time2: +120 time2: 12.434

Simultaneously, we are running Agilla agents with the
generated paths and we test them against node failures on
realistic scenarios. We are considering two different redun-
dancy strategies, the first one using just one single agent able
to switch among k different paths, and the second one using
k simultaneous mobile agents roaming the WSN, each with
a different itinerary.

Acknowledgments This work has been funded by the Spanish Min-
istry of Science and Innovation through the project TIN2010-15764.
We would like to thank Aitor López for his collaboration when imple-

123



Prog Artif Intell (2012) 1:183–191 191

menting both the genetic algorithm and the DFS, and Daniel Massaguer
for his helpful comments on this implementation.

References

1. Basak, S., Modanwal, N., Mazumdar, B.D.: Multi-agent based
disaster management system: a review. Int. J. Comput. Sci. Tech-
nol. 2, 343–348 (2011)

2. Bellifemine, F.L., Caire, G., Greenwood, D.: Developing multi-
agent systems with JADE. Wiley, New York (2007)

3. Cucurull, J., Ametller, J., Martí, R.: Agent mobility. In: Developing
multi-agent systems with JADE, Wiley Inc., pp 115–130 (2007)

4. Dressler, F.: Self-Organization in Sensor and Actor Networks.
Wiley, New York (2007)

5. Filippoupolitis, A., Gelenbe, E.: A decision support system for
disaster management in buildings. In: Proceedings of the Summer
Computer Simulation Conference, pp. 141–147, Istanbul, Turkey
(2009)

6. Fok, Ch-L., Roman, G-C., Lu, Ch.: Agilla: A mobile agent mid-
dleware for self-adaptive wireless sensor networks. ACM Trans.
Auton. Adapt. Syst. 4(3), 1–26 (2009)

7. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.:
System architecture directions for networked sensors. In: Proceed-
ings of the Ninth International Conference on Architectural Support
for Programming Languages and Operating Systems, pp. 93–104.
ACM (2000)

8. Iyengar, S.S., Parameshwaran, N., Phoha, V.V., Balakrishnan, N.,
Okoye, C.D.: Fundamentals of Sensor Network Programming:
Applications and Technology. Wiley-IEEE Press (2010)

9. De Jong, K.A., Spears, W.M.: Using genetic algorithms to solve
NP-complete problems (1989)

10. Larrañaga, P., Kuijpers, C.M.H., Murga, R.H., Inza, I., Dizdar-
evic, S.: Genetic algorithms for the travelling salesman problem: A
review of representations and operators. Artif. Intell. Rev. 13, 129–
170 (1999). doi:10.1023/A:1006529012972

11. Mackway-Jones, K. (ed.) Emergency triage, 2nd edn. Wiley,
New York (2006)

12. Martí, R., Robles, S., Martín-Campillo, A., Cucurull, J.: Providing
early resource allocation during emergencies: the mobile triage
tag. J. Netw. Comput. Appl. 32, 1167–1182 (2009)

13. Massaguer, D.: Multi mobile agent deployment in wireless sensor
networks. Master’s thesis. University of California, Irvine (2005)

14. Mercadal, E., Robles, S., Martí, R., Sreenan, C., Borrell, J.: Heter-
ogeneous multiagent architecture for dynamic triage of victims in
emergency scenarios. In: In 9th International Conference on Prac-
tical Applications of Agents and Multiagent Systems (PAAMS),
pp. 237–246 (2011)

15. Papadimitriou, C.H.: The Euclidean travelling salesman problem
is NP-complete. Theor. Comput. Sci. 4(3), 237–244 (1977)

16. Polastre, J., Szewczyk, R., Culler, D.: Telos: Enabling ultra-low
power wireless research. In: IPSN ’05 Proceedings of the 4th Inter-
national Symposium on Information Processing in Sensor Net-
works, pp. 364–369. ACM and IEEE (2005)

17. Quillinan, T. Brazier, F., Aldewereld, H., Dignum, V., Dignum,
F., Penserini, L., Wijngaards, N.: Developing agent-based orga-
nizational models for crisis management. In: Proceedings of
Eighth Joint Conference on Autonomous and Multi-Agent Systems
(AAMAS 2009), pp. 45–52 (2009)

18. Schoenharl, T., Szabó, G., Madey, G., Barabási, A.-L.: Wiper: A
multi-agent system for emergency response. In: Proceedings of
ISCRAM (2006)

19. Shah, R.C., Roy, S., Jain, S., Brunette W.: Data mules: modeling a
three-tier architecture for sparse sensor networks. In: Proceedings
of Sensor Network Protocols and Applications (SNPA), pp. 30–41.
IEEE (2003)

20. Super G.: START: a triage training module. Newport Beach,
California: Hoag Memorial Hospital Presbyterian (1984)

21. Tadokoro, S., Kitano, H., Takahashi, T., Noda, I., Matsubara, H.,
Shinjoh, A., Koto, T., Takeuchi, I., Takahashi, H., Matsuno, F.,
Hatayama, M., Nobe, J., Shimada S.: The robocup-rescue project:
a robotic approach to the disaster mitigation problem. In: Proceed-
ings of ICRA, pp. 4089–4094 (2000)

22. Wang, X., Chen, M., Kwon, T., Chao, H.C.: Multiple mobile agents’
itinerary planning in wireless sensor networks: survey and evalua-
tion. Commun. IET 5(12), 1769–1776 (2011)

23. Wu, Q., Rao, N.S.V., Barhen, J., Iyengar, S.S., Vaishnavi, V.K.,
Qi, H., Chakrabarty, K.: On computing mobile agent routes for
data fusion in distributed sensor networks. IEEE Trans. Knowl.
Data Eng. 16(6), 740–753 (2004)

123

http://dx.doi.org/10.1023/A:1006529012972

	Double multiagent architecture for dynamic triage of victims in emergency scenarios
	Abstract
	1 Introduction
	2 Background
	2.1 MAETT
	2.2 Wireless sensor networks and Agilla mobile agent middleware

	3 Double multiagent architecture to provide dynamism to MAETT
	3.1 WSN set up and operation
	3.2 Roaming the whole WSN
	3.3 WSN maintenance
	3.4 The WSN---handheld device interface

	4 Experimental evaluation
	5 Conclusions
	Acknowledgments
	References


