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Resource-aware Video Multicasting via Access
Gateways in Wireless Mesh Networks

Wanqing Tu1, Cormac J. Sreenan2, Chun Tung Chou3, Archan Misra4, and Sanjay Jha3

Abstract— This paper studies video multicasting in large scale
areas using wireless mesh networks. The focus is on the use of
Internet access gateways that allow a choice of alternative routes
to avoid potentially lengthy and low capacity multi-hop wireless
paths. A set of heuristic-based algorithms is described that together
aim to maximize reliable network capacity: the two-tier integrated
architecture algorithm, the weighted gateway uploading algorithm,
the link-controlled routing tree algorithm, and the dynamic group
management algorithm. These algorithms use different approaches
to arrange nodes involved in video multicasting into a clustered and
two-tier integrated architecture in which network protocols can make
use of multiple gateways to improve system throughput. Simulation
results are presented, showing that our multicasting algorithms can
achieve up to 40% more throughput than other related published
approaches.

Index Terms— Multicasting, resource awareness, wireless mesh net-
works, large-scale integrated routing, video streaming.

I. INTRODUCTION

Video streaming represents one of the fastest growing segments of

traffic in the Internet today. Multicasting of video over wireless

networks is a challenging problem, due to the combination of

high data rates (relative to wireless capacity) and low latency

constraints and the need to support multiple receivers with time-

varying link quality. Wireless mesh networks (WMNs) offer an

attractive solution for low-cost connectivity over large urban

areas. A WMN consists of a set of mesh nodes offering con-

nectivity to end user devices; the mesh nodes form a relatively-

static, multi-hop wireless backbone. Supporting video applica-

tions (e.g. wireless video television distribution, large-scale video

conferencing, urban traffic management, and multimedia distance

learning) in such mesh environments is particularly challenging,

given the observed loss in network throughput that occurs when

packets traverse multiple successive wireless hops. Accordingly,

to support video multicasting over WMNs, we need to maximize

the use of available network resources.

Various papers, e.g. [11-13], have examined the use of multiple

wireless transmission rates, multiple radio interfaces, multiple

paths, and wireless broadcast advantage to improve wireless

network capacity. These approaches are intra-mesh schemes, in

that they aim to support video transmission in WMNs by using

wireless resources more effectively. An alternative approach is to

enhance WMNs with access gateways that can provide alternative

routing paths via the Internet. This allows a reduction in wireless

transmission distance (the number of wireless hops traversed)
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and hence an improvement in residual capacity. We call this

gateway-based approach the integrated architecture and illustrate

its potential in Fig. 1. The intra-mesh communication from S to

R experiences at least 6 hops, while the integrated path (shown

by the arrow lines) traverse only 2 wireless hops (to or from

the gateways) by taking advantage of an Internet shortcut among

the gateways. Besides reducing the hop count, an additional set

of advantages accrue from the higher bandwidth and lower loss

rates that the Internet (wired) paths offer, compared to the WMN

wireless links.

Gateway-based approaches [8-9] for routing in WMNs typically

aim to improve forwarding performance over large physical

distances (possibly across multiple network domains), by using

wired paths preferentially over wireless links whenever possible,

without regard to the quality and congestion experienced by

different links. However, in many instances, the use of an Internet-

based path may actually prove counterproductive, especially if the

vicinity of the access gateways is congested. In Fig. 1, packets

from S prefer the intra-mesh routing to reach R′ because the

intra-mesh routing has the same number of wireless hops as the

integrated path but needs no Internet access. Hence, the choice

between an intra-mesh route vs. an integrated path is an involved

one, that must clearly take into account relative position of the

sending and receiving nodes, and more importantly, the traffic

congestion and link quality on both the intra-mesh and integrated
paths.

Fig. 1. An example of the two-tier integrated architecture.

Based on these observations, this paper develops a video mul-

ticasting framework for large-scale environments that exploits

the combination of available Internet resources and intra-WMN

wireless bandwidth. To start, we account for the degradation in

video transmission that arises from its transfer over multiple

successive wireless links within the WMN. This observation

forms the basis for our resource-aware multi-gateway WMN
video multicasting scheme, which uses a set of inter-linked novel

algorithms to construct integrated multicast routes that maximize
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the network’s capacity for video traffic that is sensitive to Quality-

of-Service (QoS) requirements such as end-to-end delays and

throughput. Our multicasting framework improves our previous

work [26] on resource-efficient and reliable video multicasting by

reducing the associated signaling overheads and by better utilizing

the dynamically-changing available capacity on different wireless

paths. To construct this framework, the following algorithms are

presented.

• The two-tier integrated architecture (TIA) algorithm estab-

lishes a hybrid wired-wireless routing hierarchy. To avoid

the use of an excessively large number of wireless hops,

TIA (unlike the schemes in [8-9]) employs a threshold

on the number of wireless hops to initially cluster WMN

gateways and mesh nodes into different lower-tier access
areas. To connect different access areas for video delivery to

all group receivers, TIA (in contrast to [26] which employs

broadcasting to find gateways and thus is limited to operation

within a single domain) uses a receiver-driven multicast

protocol to establish a distribution tree connecting gateways

in different Internet domains.

• The weighted gateway uploading (WGU) algorithm is used

by a sender in its access area to select one among multiple

candidate gateways for directing video via the Internet, so

as to ensure efficient and high throughput video routing.

Instead of using the static hop distance as the only metric

for gateway selection [26], the enhanced WGU uses a metric

that balances the traffic load of a gateway, the path reliability

and the delay distance from the gateway to the sender.

• The link-controlled routing tree (LCRT) algorithm builds

a multicast tree, inside each access area, that decreases

the interference-induced delays within the WMN while

guaranteeing the highest possible transmission throughput.

In addition to exploiting wireless broadcast advantage by

constructing a forwarding tree that minimizes the number

of mutually-interfering forwarding nodes [26], the enhanced

LCRT algorithm presented here also seeks to use better

quality links for reliable video multicasting.

• The dynamic group management (DGM) algorithm main-

tains the multicasting framework with controlled overheads

when dynamic changes take place. New members are ad-

mitted to the group through a short and reliable path.

Multicast interruption is recovered by using interference-

limited routing paths.

The rest of the paper is organized as follows. Section II assesses

related previous work. Section III analyzes the problem of degra-

dation of video quality in large scale wireless mesh networks.

Section IV then presents our resource-aware multi-gateway WMN
video multicasting solution. Computer simulations and evaluation

are detailed in Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

Research in the area of video multicasting using wireless mesh

networks can be classified as being either intra-mesh, where the

focus is on the optimization of wireless links and interfaces, or

integrated where the use of Internet access gateways is assumed.

Intra-mesh video multicasting utilizes modern wireless techniques

such as multiple rate transmission, multiple channels, wireless

broadcast advantage, etc. B. Liu et al. [11] proposed the Rate
and Contention Aware Multicast (RCAM) scheme that exploits

link-rate diversity to construct a multicast forwarding tree, based

on the link transmission rates and the associated congestion load

expressed via a cumulative transmission time fraction (CTTF)
metric. For efficient wireless broadcasting, C. Chou et al. [12]

suggested the use of a metric that optimizes the product of the

link rate and the coverage area. Subsequently, Wang et al. [13]

proposed a broadcast tree construction algorithm that reduces

start-up delays, while exploiting the relationship between trans-

mission rates and their coverage range. Apart from these papers,

it is analytically well-known [2] that the per-node multicast

throughput of a random multi-hop network with n nodes, ns

multicast sources and nd destinations is fundamentally bounded

by O(min(1,
√

n

ns

√
nd log n

)) with a high probability, implying that

the multicast throughput is a decreasing function of the size of

the network. This motivates our design goal of limiting the depth

of a wireless multi-hop path.

Integrated wireless transmission has been studied by B. Liu et al.
in [24]. This paper analyzes unicast flows and shows that using

Internet shortcuts would significantly increase network capacity.

For integrated multicasting in WMNs, P. Ruiz et al. [8] proposed

a routing mechanism where mesh nodes connect to their “closest”

gateway by the procedures described in [25]. Mesh nodes that

form an “island” with prefix continuity connect to the Internet

through a shared “closest” gateway. The selection of gateways

is based purely on topology and fails to consider the tradeoff

between the selection of a closer (i.e., less hops) but more

congested gateway vs. the use of a farther, less utilized gateway,

especially when the end-to-end path consists of additional intra-

WMN hops. Y. Amir et al. [9] presented a hybrid routing protocol

for multi-homed wireless mesh networks that provides uninter-

rupted connectivity and fast handoffs, rather than load-based

multicast dissemination. In general, these papers do not consider

load-balanced access via the Internet and use wired resources

irrespective of the relative merits of intra-mesh vs. gateway-

based paths. In this paper, we present a multi-step integrated
procedure that makes a judicious use of Internet resources while

cooperatively sharing intra-WMN wireless bandwidth for single-

source video multicasting applications.

III. PROBLEM FORMULATION

For a wireless mesh network, suppose that a set of n nodes

participates in multicasting a given video flow. The set of

n nodes, including G gateways (gi, i ∈ [0, G − 1]) and M
mesh nodes (mj , j ∈ [0,M − 1]), can be denoted as U =
{g0, g1, ..., g(G−1),m0,m1, ..., m(M−1)}. That is, n = G + M .

More specifically, the G gateways play different roles in our

multicasting architecture.

• Corresponding gateway: a gateway that joins in a video

multicasting session V .

• Area gateway: a gateway that creates a new access area,

besides multicasting a video session V .

• Uploading gateway: a gateway, located in the access area of

a multicast source, that forwards a video session V to remote

group members through the Internet. The uploading gateway
also selects area gateways for different access areas.

The M mesh nodes are composed of mesh routers and mesh

clients, and play different roles below in our multicast architec-

ture.

• Multicast group members are mesh nodes that either send a

video flow V and/or are receivers of a multicast video flow

V .
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TABLE I

SYMBOL LIST

U Set of nodes participating in multicasting a video session V
s Sending source of a video session V
n The number of nodes (including gateways and mesh nodes)

in U
G Number of gateways in U
M Number of mesh nodes (group members and intermediate

mesh node) in U
gi The ith (i ∈ [0, G − 1]) gateway in U
mj The jth (j ∈ [0, M − 1]) mesh node in U
K Threshold of the number of wireless hops that guarantees

the quality of wireless transmission
k Number of wireless hops from s to its uploading

gateway
rV (bit/s) Transmission rate of a video session V
(rV )basic Transmission rate of the lowest-acceptable video quality of V

(bit/s)
L Number of wireless links on path
P Number of packets transmitted

Cl(bit/s) Capacity of link l
ρ Average distribution density of wireless nodes in the mul-

ticasting system of V
d Average distance of one wireless hop in the multicasting

system of V
κ Interference factor of wireless channels in the system
� The highest link loss rate in the system

wi Weight of the ith (i ∈ [0, G′]) gateway in the source
access area with G′ gateways (WGU algorithm)

ηj Weight (defined in (3)) of the jth (j ∈ [0, n′ − 1]) node
in an access area with the size of n′ (LCRT algorithm)

• Intermediate nodes are mesh nodes that are involved in

constructing the hierarchical multicast architecture, i.e., they

include the mesh nodes within an access area, irrespective of

whether or not they become active forwarders on multicast

traffic distribution trees.

For brevity, we will use the term “nodes” to refer to any elements

in U . Nodes that are selected to relay a video session V to

receivers through multicast trees are called multicast forwarders

in this paper. Table I lists the major symbols used in this paper.

To allow video multicasting over a large-scale WMN without

suffering unacceptably high degradation, we first capture the

degradation of wireless video signals during transmission (called

wireless video communication cost), in terms of either throughput

cost or delay cost.

• Throughput cost is defined as the difference in the trans-

mission data rate of a source and the reception data rate

by a multicast receiver node. This difference may occur as

a result of either buffer overflow at multicast forwarders

or transmission loss (due to interference or link quality

degradation) on forwarding links.

• Delay cost is defined as the additional end-to-end latency

that results from buffering by nodes in order to resolve link

contention prior to subsequent transmission of a packet.

Fundamentally, the improvement of throughput cost and delay

cost depends on factors such as the number of wireless links (L)

in the path, the minimum capacity of the L links, and the capacity

lost by interference and errors at each link. For throughput

cost, reducing the wireless hop count increases video multicas-

ting capacity because the decreased L reduces the interference-

induced packet loss. Previous proposals [19-21] extend wireless

communication range by minimizing L (choosing shortest paths)

within wireless ranges, but these proposals can only extend the

range by a few more wireless hops, which is of limited benefit.

Hence, our first objective is to use Internet shortcuts to limit the

total number of wireless hops traversed by the video traffic.

Besides simply reducing the total number of wireless hops,

we must also minimize the capacity loss and delays on each

link caused by transmission interference/contention and link

unreliability. In multi-hop wireless networks, link loss is very

common and contention can arise because multicast transmissions

require more than one node within an interference area to forward

multicasting traffic. Fig. 2 illustrates a possible situation where

the multicast transmissions of sibling nodes can interfere with

each other’s reception. The simultaneous transmissions A → C
and B → D generate redundant mutual transmissions between

A and B as shown by the grey arrow lines between them, which

interfere with the reception of A and B from their upstream node

E, as illustrated by the sibling interference flashes at A and B.

Hence, our second objective is to decrease the capacity loss by

employing reliable wireless links while minimizing the number

of potentially interfering packet transmissions.

Finally, to reduce the overall throughput and delay costs, it is

also necessary to ensure that the “bottleneck link” (the one with

the minimum capacity on the forwarding path) possesses a large

and reliable residual bandwidth. This is especially important in

integrated wireless communications, where gateways connecting

to the Internet are likely to become “bottlenecks” because they

carry both ingress and egress traffic between the mesh nodes

and the Internet. Hence, our third objective is to avoid the use

of “busy” gateways. In the next section, we shall present our

multi-tier algorithmic approach that addresses each of these three

objectives.

Fig. 2. An example of interference when multicasting video streams.

IV. RESOURCE-AWARE MULTI-GATEWAY WMN VIDEO

MULTICASTING

In this section, we present the four key elements of the resource-
aware multi-gateway WMN video multicasting scheme:

• Two-tier integrated architecture (TIA): The TIA con-

structs access areas interconnected by a wired network.

Nodes are assigned to an access area, so as to bound the

number of wireless hops to a gateway, in a way that assures

acceptable QoS.

• Weighted gateway uploading (WGU): The WGU algo-

rithm is used by a multicast source node to select a gateway

node within its access area based on load levels, path

reliability, and hop count.

• Link-controlled routing tree (LCRT): The LCRT algo-

rithm routes traffic within each access area so as to reduce

interference and channel contention while achieving a con-

sistently higher throughput.
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• Dynamic Group Management (DGM): The DGM al-

gorithm deals with group membership and recovery from

transmission interruptions.

A. Two-Tier Integrated Architecture (TIA)

As previously discussed, distant users are likely to benefit from

employing an Internet shortcut, while proximal users would likely

prefer intra-mesh routing. The TIA is designed to facilitate the

selection of paths, keeping in mind the differences in objectives

among different receivers. As illustrated in Fig. 1, all of the nodes

join in the lower tier where they are separated into access areas.

From this point on, we call an access area in which the video

source resides as a source access area; an access area in which

no video source resides is referred to as a non-source access area.

In a given source access area, there is one uploading gateway
that is selected by the source s using the weighted gateway
uploading algorithm; in a given non-source access area, there

is one area gateway that is selected based on a defined metric

among gateways that have registered with group receivers.

1) Access Area Construction: The access area construction
algorithm clusters nodes into individual access areas, such that

the hop distance between nodes within an access area does not

exceed a maximum permitted threshold:

• 2K for a source access area
• 2(K − k) for a non-source access area

where k is the hop distance between the source s and its

uploading gateway. The value of K for practical applications

will be analyzed later in this paper.

We now explain the access area construction by introducing the

formation of the source access area which requires two key mes-

sages: AREA CONSTRUCTION and JOIN REPORT, illustrating

with the example in Fig. 3. To start the construction, the source

s of the video flow V broadcasts an AREA CONSTRUCTION

request packet, with TTL = K (in the example, K = 2), that

includes three fields:

1) area id of this constructing access area
2) address of the packet sender/forwarder

3) packet’s TTL which is initially set to K, the maximum

permitted number of wireless hops.

Nodes that receive AREA CONSTRUCTION (i.e. the grey nodes

in Fig. 3 (a)) use the area id to set their own ID, and then

rebroadcast the message (after decrementing the TTL field by 1)

if it was arrived with a higher TTL than any previously received

message copy (as illustrated by the black arrow lines in Fig. 3

(b)). In this way the AREA CONSTRUCTION is flooded over

the K hop neighborhood to construct the source access area. The

source access area is the dotted circle area in Fig. 3 (b).

Nodes also send JOIN REPORT messages to s, as illustrated

by the grey arrow lines in the source access area of Fig. 3.

This message provides their node types (i.e. gateways or mesh

nodes), addresses and hop distances to s, allowing it to discover

nodes that are within a K-hop intra-WMN neighborhood. A

JOIN REPORT is broadcast to s and each intermediate node

forwards the same JOIN REPORT only once. The primary mo-

tivation for the use of broadcast is to search for corresponding
gateways in a non-source access area (Section IV C), but it also

provides the reliable delivery of JOIN REPORT to source s.

For JOIN REPORT broadcasting in a non-source access area, a

gateway receiving the message contacts its area gateway directly

through the Internet instead of using wireless broadcasting. This

(a)

(b)

Fig. 3. An example of the access area construction. Square nodes represent
gateways. Circle nodes represent mesh routers/mesh clients. Black nodes and grey
nodes are the senders and the receivers of AREA CONSTRUCTION respectively.

significantly improves the overhead performance of our previous

algorithm [26].

2) Other Gateway-Initiated Access Areas: When the source

access area is constructed, s uses the weighted gateway uploading
algorithm to select an uploading gateway from all of the cor-
responding gateways in the source access area. This procedure

is illustrated in Fig. 3 (b) in which the black square represents

s’s uploading gateway. The uploading gateway is responsible

for selecting area gateways among plausible gateways for non-

source access areas before it distributes V to group receivers

in non-source access areas through wired connections. Plausible

gateways are the gateways that can forward the video flow V to

the receivers without violating the “the total number of wireless

links < K” constraint, i.e., gateways that lie within K hops

of at least one multicast receiver. As indicated by the arrows

outside the source access area in Fig. 3 (a), plausible gateways

are searched by multicast receivers through sending registration

packets (potentially asynchronously) with the group id.

The procedure to select area gateways, as illustrated by the arrow

lines in Fig. 4 (a):

• plausible gateways request s for an uploading gateway2 first.

Requests are routed via the Internet to s’s default gateway,

which passes these requests to s.

• On receiving a request, s replies with the uploading gate-
way’s IP address and the value of (K−k) (which is 1 in the

example of Fig. 4) by issuing a reply back along the reverse

path.

• Hereafter, plausible gateways run a receiver-driven multicast

protocol (say PIM-SM) to establish a distribution tree rooted

2The IP address of the video sender is published with the group id by the
sender s itself.
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at the uploading gateway.

This latter procedure is illustrated by the big grey arrow lines in

Fig. 4 (b). When building the receiver-driven tree, the gateways

also inform the uploading gateway of their:

• available wireless transmission capacity
• lists of registered receivers
• hop distances to the registered receivers

The uploading gateway then selects area gateways based on

the d
o values of gateways, where d is the gateway’s dynamic

distance (e.g. delay distance) to the uploading gateway and o
is the available (residual) wireless transmission capacity of the

gateway.

The first area gateway to be selected is the one that has the

minimum d
o value. Using the Internet, the uploading gateway

informs this selected area gateway of its role and uses it as a

base node to choose additional gateways for this access area that

have registered multicast receivers who are within the (K − k)-
hop coverage of the area gateway. Subsequently, the second

selected area gateway is that with the minimum d
o value among

the gateways that are not in a non-source access area. The

procedure continues until area gateways can cover all receivers.

Selected area gateways then implement a similar process to that

of s, except for using the diameters of 2(K − k), to construct

non-source access areas. In Fig. 4 (b), area gateways (labeled

by black squares) send the AREA CONSTRUCTION packets

with TTL = 1 because k = 1 in this example. This proposed

construction algorithm allows area gateways to form access
areas in parallel, and is thus faster than the sequential algorithm

originally presented in [26].

When the construction of non-source access areas concludes,

the two-tier architecture is completed. Video multicasting in the

upper tier is implemented by the uploading gateway through the

receiver-driven distribution tree. Area gateways and correspond-
ing gateways (selected by the LCRT algorithm in Section IV

D) multicast V within their access areas through link-controlled
routing trees once receiving V from the uploading gateway.

3) Discussion: We use the threshold of the number of wireless
hops (K) to provide an initial static approach to avoiding paths

with an excessive number of wireless links. This section studies

how to decide the threshold K initially.

Denote the average density of transmitting multicast nodes in our

WMN system as ρ and the average distance of one wireless hop as

d. Then, the average interference range of each sender/forwarder

is κd, where κ > 1 is a factor induced to express that an

interference range is usually larger than a transmission range.

Hence, the average number of nodes in an interference range is

ρπ(κd)2.

To calculate the transmission throughput that a K-hop path

can provide, the bottleneck capacity on this path should be

considered. Since a wireless channel can only be used by one

node in an interference range in order to avoid interference, a

bottleneck link on the K-hop path will be a link such that all

nodes in the same interference range are transmitting data. Under

these circumstances and for simplicity, assuming an ideal MAC

layer protocol that provides channel access equally to interfering

nodes, the bottleneck capacity is then C
ρπ(κd)2 , where C is the

capacity of individual wireless links in the system. Note that

nodes in the same interference areas may not always need to

send data simultaneously and therefore there may be a higher

bottleneck capacity. However, to make sure that the threshold can

(a)

(b)

Fig. 4. An example of constructing a two-tier integrated architecture.
Square nodes represent gateways. Circle nodes represent mesh routers/mesh
clients. Black nodes and grey nodes are the senders and the receivers of
AREA CONSTRUCTION respectively.

guarantee acceptable performance, we use a bottleneck capacity

of C
ρπ(κd)2 to calculate K. Denote the sending rate of V as rV .

The receiving rate at the receiver on this K-hop path should be,

without considering link loss, min{rV , C
ρπ(κd)2 }.

We now consider how link loss affects K. Denote the loss

rate of the ith link as �i. The receiving rate at the re-

ceiver then becomes rK
V = min{rV , C

ρπ(κd)2 }
∏K

i=1(1 − �i).
Suppose � = max{�i, i ∈ [1,K]}. Then we have, rK

V ≥
min{rV , C

ρπ(κd)2 }(1 − �)K . Since rK
V should be at least higher

than rate (rV )basic, to ensure the lowest-acceptable video quality,

the expression min{rV , C
ρπ(κd)2 }(1− �)K ≥ (rV )basic should be

satisfied. Accordingly, it follows that the maximum number of

acceptable wireless hops K must meet

K ≤ log
min{rV , C

ρπ(κd)2
}

(rV )basic
1

1−�

. (1)

Expression (1) shows, in practical systems, K is determined by

the choice of radio interfaces/channels, the node distribution, the

video data rate, and the QoS desired by an application. A channel

with a larger transmission neighborhood (i.e. a larger d) implies a

larger number of contending transmissions. A dense distribution

of wireless transmission nodes (i.e. a larger ρ) means intensive

interference. An application requiring a higher (rV )basic can

tolerate a smaller value of K. All of these three situations require

smaller access areas in order to reliably achieve acceptable video

performance. Wireless throughput could be more complicated in

practical WMN systems. The above calculation can always be

employed to decide the initial value of K. K may be changed

later on if some nodes consistently experience unacceptable

video performance. These unsatisfied nodes send LEAVE packets
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including their IDs (e.g., IP addresses) to their forwarders3, and

then join other access areas (existing or newly created by a new

gateway) according to the algorithm in Section IV D, along with

any downstream forwarders/receivers that they may have.

B. Weighted Gateway Uploading (WGU)

The WGU selects an uploading gateway through which a source

can send its video data to group receivers in non-source access
areas. In our previous work [26], a static metric - the gateways’

distances to s was used to choose such an uploading gateway.

This new algorithm takes the reliability of the connection between

the uploading gateway and the sender into account because group

receivers in non-source access areas depend on this connection

to receive video traffic. More specifically, the WGU algorithm

assigns each gateway in the source access area a weight which is

a function of the gateways’ available capacity and their reliability

to connect to the sender. The gateway with the largest weight

is selected as the uploading gateway. The detailed algorithm

procedure is described below.

During the construction of the source access area, each gateway

piggybacks a gateway report into its JOIN REPORT when reply-

ing to s’s AREA CONSTRUCTION. The gateway report includes

three fields:

• IP address of the gateway

• available capacity of the gateway’s wireless link which is

assessed by the gateway based on the transmission rate that

it currently provides

• reliability of the path employed to send this report

The reliability ri,j of a path j from the ith gateway to s is the

product of the reliability of all L links on the path. Namely,

ri,j =
L−1∏

j′=0

(ri,j′), i ∈ [0, G′ − 1],

where ri,j′ = (1− �i,j) is the reliability of the j′th wireless link

on the path j, �i,j is the loss rate of the j′th wireless link, and

G′ is the number of gateways in the source access area. s might

receive multiple JOIN REPORT messages from a gateway but

via different paths because of wireless broadcast transmission. It

selects the path with the highest R value as the best path to reach

this gateway. The R value of the ith gateway is

Ri = max{ ri,j

di,j
, i ∈ [0, G′ − 1], j ∈ [0, Ji − 1]},

where Ji is the number of JOIN REPORT received by s
from the ith gateway, and di,j is the time delay between

s sending AREA CONSTRUCTION and s receiving the jth

JOIN REPORT. This equation generally guarantees that each

gateway reliably connects to s through a short delay path.

To avoid a long delay to decide the uploading gateway, after a

period of 2×T 4 since s receives the first JOIN REPORT, s starts

to select the uploading gateway based on the gateways’ weights.

The weight of the ith gateway wi is

wi = Ci × Ri, i ∈ [0, G′′ − 1], (2)

where G′′ ≤ G′ is the number of gateways from which s received

their replies, and Ci is the ith gateway’s available capacity.

3An on-tree forwarder stops multicasting (to reduce traffic load and interfer-
ence) when it receives LEAVE packets from all of its direct child nodes.

4T is the difference between the time that s sends AREA CONSTRUCTION
and the time that s receives the first JOIN REPORT.

Equation (2) indicates that the selection of uploading gateway
uses a load-reliability balanced metric to find a “non-busy” and

close gateway that can receive stable wireless transmission from

s, thereby avoiding “bottleneck” gateway nodes.

Although the selected uploading gateway may not remain the

best in terms of its weight value calculated by (2) because

of dynamic network conditions, the uploading gateway is not

changed dynamically due to the cascading effect of this change

on the TIA algorithm: resulting in high signaling load and

reconfiguration delays. Over the long term and across the network

as a whole, the utilization of gateways to upload data is balanced

because gateways in better conditions will be always chosen as

uploading gateways by newly coming data sources. However,

if the uploading gateway does become unavailable (detected

by s when it fails to receive 3 consecutive HELLO messages

periodically from the uploading gateway), s selects a new up-
loading gateway among the remaining gateways in its access
area and then invokes the procedure such that area gateways
and corresponding gateways in non-source access areas run a

receiver-driven multicast protocol to establish a distribution tree

rooted at the new uploading gateway.

C. Link-controlled Routing Tree (LCRT)

The LCRT algorithm is run by the source in the source access
area or by the area gateway in a non-source access area to

construct a routing tree that multicasts packets so as to mini-

mize the impact of wireless interference during intra-access area

forwarding.

1) LCRT Metrics: It was analyzed in Section III that a smaller L
improves the performance of V . The link-controlled routing tree

in a non-source access area is a multi-root distribution tree, on

which multiple gateways, both area gateways and corresponding
gateways, serve as multiple virtual senders for the non-source

access area. Each group member will receive V by connecting

(directly or through intermediate nodes) to its closest gateway,

allowing a shorter path (i.e. a smaller L) than if it has to connect

to a single input gateway. The availability of multiple roots is

guaranteed by multicasting between gateways in the upper tier.

To reduce wireless interference analyzed in Section III (Fig. 2), in

[26], the least number of nodes that can cover all multicast group

members in an access area are selected as on-tree forwarders.

This paper improves that algorithm by further combining the

metric of availability with the motivation of achieving reliable

and interference-controlled multicasting performance. The avail-
ability of the jth node in an access area is

Uj =
Cj∑Fj−1

f=0 rf

, j ∈ n′,

where n′ is the set of nodes in the non-source access area,

Cj is the jth node’s output channel capacity, Fj is the number

of data flows that the jth node is transmitting, and rf is the

transmission rate of the f th flow. The LCRT algorithm essentially

employs a weighted dominating set cover heuristic, where nodes

are associated with a metric η defined as

ηj = Dj × 1
Nj

× Uj , j ∈ n′, (3)

where Dj is the number of direct downstream nodes of the jth

node, and Nj is the number of nodes that are transmitting V or

other data flows in the jth node’s interference range. Usually,
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Dj ≤ Nj . Nodes with larger values of η have the priority to

be on-tree forwarders. Intuitively, a node with a larger η implies

that it is currently serving fewer other data flows and also has a

smaller number of interfering neighbors.
2) LCRT Algorithm: Before explaining the procedure of the

LCRT algorithm, we define the following terms:

• Node level is defined as the least number of wireless hops

from the multicast node to its closest gateway. A l-level node

has at least l wireless hops to its closest gateways. As an

example, in Fig. 5, A, B, C and D are 1-level nodes because

they only need one hop to reach their closest gateways.

• A node’s uncovered out degree refers to the number of

its direct child nodes (including group receivers and non-

member forwarders) that are not covered by any current

multicast forwarders. In Fig. 5, the uncovered out degree
of G2 is 0.

Fig. 5. An example of the link-controlled routing tree.

We now see how to search the multiple roots of a LCRT.

During the construction of a non-source access area, each

node responding to the area gateway’s AREA CONSTRUCTION

includes a TTL field into its JOIN REPORT message. The

TTL in JOIN REPORT is initially set as 0 and increases by

1 after passing each hop. If the JOIN REPORT message passes

a corresponding gateway (in the same access area) on the way

back to the area gateway, this corresponding gateway records the

TTL and IP address from JOIN REPORT and reports to the area
gateway via the Internet that it has a shorter distance to the node

than the area gateway does. Finally, the area gateway decides a

node level based on the information received from both wireless

and wired links. The TTL of the node to its closest gateway

among both corresponding gateways and area gateway in the

access area is set as the level of this node.

With the knowledge of nodes’ levels, s or area gateways run the

tree construction (Algorithm 1) in their own access areas which

starts at the nodes with the largest levels.

—————————————————————————–
Algorithm 1 Link-Controlled Routing Tree
Input: An access area, the source s in the source access
area, or the area gateway AG in a non-source access area.

Output: The link-controlled routing tree in the access area.

1. s/AG obtains each area node’s address information, availa-
bility, and its hop distance to s/AG/CG (corresponding gate-

way) during constructing access areas;

2. s/AG assigns a node level to each area node according to

its hop distance to s/AG/CG;

3. s/AG sets the multicast receivers with the levels of L as

leaf nodes, and l = L − 1 to start the tree construction; // L
is the highest level number

4. While l > 0
5. While uml �= 0 // uml is the number of uncovered no-

des (including group receivers and forwarders) in the (l + 1)th
level

6. s/AG selects a l-level node who has the maximum

η value among all non-forwarding l-level nodes to be a forwa-

rder;

7. s/AG removes the m (l + 1)-level nodes who have

been covered by the selected forwarder from the uncovered m-

ember set, and updates uml = uml − m;

8. l = l − 1;

9. AG sends on-tree forwarder lists via the Internet to CGs at

which the forwarders are rooted.

10. s/AG/CG sends a list of forwarders rooted at it wirelessly

within its access area.

11. Nodes that received the forwarder information checks wh-

ether they are on the list. If so, they remove their entries from

the lists and pass on the updated forwarder lists.

12. The tree is constructed when all the forwarder lists in an

access area are empty.

—————————————————————————–

The procedures of Algorithm 1 is illustrated by the example in

Fig. 5. Suppose B has the largest available output capacity. B is

firstly selected to be a forwarder by the area gateway (suppose

G1) because B has the largest uncovered out degree as well.

Then, among the remaining 1-level nodes, D is selected to be

a forwarder because D covers the uncovered nodes in the 2nd

level and is not adjacent to B as well. Since B and D cover all

receivers (i.e. E, F , and G), G1 stops selecting forwarders and

sends the list {D} to G3. Hereafter, two forwarder lists: {B}
and {D} are sent wirelessly by G1 and G3 respectively. B and

D become forwarders after receiving the lists.

Although this LCRT construction principle is based on the as-

sumption that each wireless channel has one transmission rate, the

algorithm can be easily extended to optimize other performance

metrics in multi-rate channel environments, e.g. using previously

developed algorithms for minimizing worst-case packet latency

[12]. Moreover, the video streams can be made yet more robust

by the recovery scheme (in the next section) which compensates

for transmission outages with low overhead.

D. Dynamic Group Management

1) Admitting New Members: When a new member wants to join

the video session V , it broadcasts JOIN GROUP with TTL =
K and group id to detect existing access areas5. Eligible nodes

respond to this new request with a JOIN AVAILABLE message,

which includes:

• responder’s area id
• responder’s confidence (which is the reciprocal of the num-

ber of transmission outages that have happened at this node

during the transmission of V )

• responders’ hop distances to both s and this new member

A node in U is eligible when its wireless distance to s (over the

the hierarchical architecture) added to its wireless distance to the

new member is less than K.

To reduce control overhead, when an eligible node receives

JOIN AVAILABLE from another eligible node, it does not

forward this message if it offers a shorter hop distance from

5Please note that the current value of K and the channel information are
advertised, along with the multicast group id by the sender s.
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s to the new member. However, the eligible node sends its

own JOIN AVAILABLE, thereby providing the new member

more choices in the selection of an upstream forwarding node.

After receiving JOIN AVAILABLE, the new member selects the

responder through which the new member can connect to s via

the least number of wireless hops with the most reliable wireless

links, as its forwarders. Hence, this new member becomes a leaf

node of the multicasting tree and starts receiving V from its

upstream node.
2) Recovering from Transmission Interruptions and Outages: In

order to reduce control overheads, link broken in our system is de-

tected through application-layer monitoring of transmission out-

ages instead of using conventional periodic link-advertisements.

More specifically, if the transmission of V is not completed6

but a node (say m0) fails to receive γ (γ = 3 for our current

implementation) consecutive packets of V , m0 suspects that its

upstream link is broken. m0 broadcasts a BROKEN message to

its upstream node via the control channel (Step 1 of Algorithm 2).

Apart from a message type field, a BROKEN message includes

an interruption id field, incremented by 1 for each new link

failure detection, which helps to distinguish different BROKEN

messages issued by the same node. The upstream node (say

m1) checks whether it is sending and receiving V or not. If

not, m1 implements Steps 3 and 4 in Algorithm 2. Apart from

sending RESPONSE message which includes the message type
and the interruption id (the same as the one in the received

BROKEN message), m1 reports its interruption to its upstream

node (say m2) in the same way that its downstream node m0

does. Otherwise if m1 is currently sending and receiving V ,

the BROKEN message from its downstream node triggers the

recovery procedure in Steps 5-15 of Algorithm 2.

A simple way with low overhead to reconnect m0 and m1 is to

use a backup channel7 at the upstream node m1 to deliver V .

m0 will listen to both the data channel and the backup channel.

If m1 receives another BROKEN message (with an increased

interruption id) from m0 after using the backup channel for

transmission, m1 reports the interruption to its upstream node,

m2 which then checks whether another node in the same level

can reach m0. Recall that nodes know about their downstream

nodes during the group receivers’ registration procedure. If more

than one such node exists, one of them (say m
′
1) will be selected

based on the LCRT algorithm to start multicasting V to m0 via

the backup channel (in order not to interfere the current on-

tree multicasting). Meanwhile, m1 continues the transmission of

V to m0 via the original channel. When m0 receives packets

from m1, it broadcasts a RECOVER message via the control

channel. After receiving RECOVER, m
′
1 stops its multicasting.

If, however, the delivery of V to m0 via m1 resumes soon, m0

sends a CONF RECOVER message to m1, which then continues

delivering V via the original channel. Otherwise, m1 asks its

upstream node m2 to reopen the connection between m
′
1 and m0

via the backup channel.

——————————————————————————–
Algorithm 2 Link-Broken Interruption Recovery
Input: A node (say m0) detects the loss of 3 packets before

the completion packet

Output: The interruption is recovered

6The end of V is illustrated by a completion packet in our multicasting.
7In our system, the backup channel is a channel different from the data channel

and the control channel. The forwarding nodes on the tree are informed of this
channel during the procedure of receiver registration.

1. m0 sends BROKEN to its upstream node (say m1);

2. If m1 is experiencing interruption

3. m1 sends RESPONSE to m0 to stop it sending BROKEN

with the same interruption id;

4. m1 implements Algorithm 2 to deal with interruption as

m0 does;

5. Else if m1 receives V well

6. m1 transmits V via the backup channel;

7. If m1 receives another BROKEN from m0 with an incr-

eased interruption id
8. m1 informs its direct upstream node m2 to select a

new forwarder by LCRT to replace itself;

9. V is transmitted by the new forwarder via the back-

up channel and by the original forwarder via the original chan-

nel as well;

10. If m0 cannot receive V after issuing RECOVER to

stop the new forwarder’s transmission

11. Go to step 8;

12. Else, the broken-link interruption is recovered and

the transmission from m1 to m0 will use the original channel.

13. Else if m1 does not receive new BROKEN from m0

14. m1 multicasts V through the backup and the original

channels; m0 receives from the backup channel and listens to

the original channel;

15. m1 stops sending through the backup channel when

m0 detects a good transmission from the original channel.

——————————————————————————–

The recovery scheme can be easily extended to fix interruptions

caused by the unexpected departure of forwarding nodes (nor-

mally mesh clients). If m0 does not receive either a RESPONSE

message from the control channel or video data from the backup

channel within a time period of transmitting γ consecutive packets

after issuing a BROKEN message, m0 broadcasts a FAILURE

message with the information of the departing node (m1) and a

failure id field (used to distinguish different FAILURE messages

issued by the same node) back to the area gateway. A FAILURE

message is only forwarded once by nodes with the levels not

higher than the nodes who forwarded the FAILURE to them. On

receiving the FAILURE report, the area gateway runs the LCRT

algorithm to select a new forwarder for m0. To avoid throughput

loss of m0, m1’s upstream forwarder may pick up temporary

forwarder from the same level of m1 for m0 if it receives a

FAILURE report about m1. Temporary forwarders multicast V
to m1’s child nodes via the backup channel.

V. PERFORMANCE EVALUATION

This section presents the results of our extensive simulation-

based evaluation of our proposed algorithms, conducted using the

discrete event network simulator NS2.33 [17]. For the purpose of

comparative evaluation, we selected the following five multicast

schemes:

1) EM: The integrated multicasting algorithm proposed in [8]

(please refer to Section II for a brief overview of EM)

2) IR: An Intra-mesh shortest-path routing that broadcasts

wireless multimedia packets to group members

3) S-RMG: The video multicasting framework that includes

TIA, WGU and LCRT proposed in [26]

4) IW: A reduced version of our integrated multicasting algo-

rithm which includes only TIA and WGU
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5) RMG: Our proposed integrated multicasting framework

which includes all the algorithms in Section IV

We evaluate the performance of the above multicasting schemes

using the following metrics:

• Average multicast delay (AMD). AMD is used to evaluate

the real time of video multicasting streams. In our simula-

tions, it is calculated by

AMD =
∑n−1

i=0 ADi

n
,

where ADi is the average packet delay at the ith group

member, and n is the group size.

• Average multicast throughput (AMT). AMT is used to

evaluate the quality of video multicating such as resolution.

In our simulations, it is calculated by

AMT =
∑n−1

i=0 ATi

n
,

where ATi is the average packet throughput at the ith group

member.

• Average multicast delay jitter (AMDJ). AMDJ is observed to

evaluate the continuous transmission of video multicasting.

A smaller AMDJ is expected. In the simulations, AMDJ is

calculated by

AMDJ =
∑n−1

i=0 ADJi

n
,

where ADJi is the average video delay jitter at the ith group

member.

• Average multicast peak signal-to-noise ratio (AMPSNR).

PSNR is a metric that captures the performance error be-

tween the original and the reconstructed video frames. Av-

erage multicast PSNR helps to access the application-level

QoS of video multicasting transmissions. It is calculated by

AMPSNR =
∑n−1

i=0 APSNRi

n
,

where APSNRi is the average PSNR of video at the ith
group member. In our simulations, PSNR data are collected

by using the EvalVid tool-set [27].

The following table lists the common parameters that we use

to implement the simulations. In the simulations, we employ

TABLE II

SIMULATION PARAMETERS

NS-2 version 2.33
Radio propagation model Nakagami
MAC protocol 802.11 with 11Mbps data rate
Bandwidth of wired links between routers 1000Mbps
Bandwidth of wired links between routers 1000Mbps
and WMN gateways
Transmission range 100m
Video transmission rate 500Kbit/s
Simulation time 500s
Number of simulation runs 20
Network dimension 2 dimensions

Interference factor (κ)
√

2

a probabilistic Nakagami propagation model which represents

channel fading characteristics of a wide-range urban settings.

Group members are randomly selected, to constitute around

20% ∼ 25% of the whole WMN size. Each simulation result is

Fig. 6. The topology of small-size WMN.

Fig. 7. The average delay performance when the WMN size in Fig. 6 increases
from 18 to 44.

the average of 20 simulation runs which last for 500 seconds each.

The node density guarantees that there are on average three nodes

covered by one transmission range. Based on these parameters

and our analysis in (1), we use K = 3 in our simulations.

A. Evaluation using a small scale WMN

This section studies the performance of the five multicast schemes

using the small scale WMN shown in Fig. 6. We vary the

WMN size (including gateways, group members, and interme-

diate nodes) from 18 nodes to 44 nodes and study the impact

of this on the network performance in terms of average multicast

delay, average multicast throughput, average multicast delay jitter,

and average multicast PSNR. In the topology, the wired and

wireless links are shown with solid lines and dashed lines,

respectively. The integrated network consists of two routers (R1

and R2) that connect to two WMN gateways. To show the

performance difference between EM and our algorithms, we place

the video sender in the middle area between two gateways which

makes EM separate the sender and part of its adjacent neighbors

into two different “prefix islands”. We also add disturbance

traffic into the area close to the sender’s closest gateway to

generate transmission interference/contention. Disturbance traffic

is injected at a constant rate, chosen uniformly over the range of

[32Kbps, 256Kbps].
1) Impact of multicast group size on performance: Fig. 7 shows

average multicast delays when the WMN size varies. All other

schemes generate longer average multicast delays than IR because

of their overhead to construct a multicast tree. The reduced delays

of RMG, in comparison with IW, show the positive effect of the

LCRT algorithm in efficiently sharing wireless resources. The
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Fig. 8. The average throughput performance when the WMN size in Fig. 6
increases from 18 to 44.

reduced delays of RMG, in comparison with S-RMG, show the

positive effect of using reliable links in wireless networks. Note

that EM generates the longest delays because it creates “islands”

based on the locations of nodes and gateways. Our simulation

settings force EM to separate the video source and part of its

adjacent neighbors into two different “islands”. Hence, although

wireless transmissions to these separated adjacent neighbors can

achieve better performance, video multicasting to these neighbors

pass through the Internet first and then from the Internet back

to WMN. In our algorithms (IW and RMG), the construction

of access areas allows direct wireless transmissions from the

sender to its adjacent neighbors. Also, the disturbance traffic in

the area near to the sender’s gateway degrades EM’s performance.

These results prove that the backhaul to wired resources should

be used judiciously in order to improve wireless communication

performance. Some nodes generate equal delays in RMG and EM

when they have the same wireless hop distances via both intra-
mesh routing and integrated routing. Some nodes generate longer

delays in RMG than in EM when their wireless hop distances to

the sender is within K but larger than the wireless hop distances

in integrated routing. However, in either situation, the multicast

delays of RMG are within the real-time delay bound.

Fig. 8 shows the average multicast throughput of the five multicast

schemes. The integrated schemes (EM, IW, S-RMG and RMG)

achieve a higher throughput than IR because they utilize the stable

and high-capacity wired connection. Note that, by constructing

LCRT, RMG achieves higher throughput than IW, and by em-

ploying reliable links and decreasing control overheads, RMG

achieves higher throughput than S-RMG. Note also that both

RMG and IW perform better than EM because of the use of the

weighted gateway uploading algorithm. Similar to the multicast

delay performance, the throughput of nodes in RMG is lower than

for the EM case where wireless hop distances to the sender are

within K but larger than the wireless hop distances for integrated
routing. However, the throughput achieved by these nodes is still

acceptable.

Fig. 9 shows the average delay jitter for the five schemes. IR

has the worst jitter performance while RMG achieves the best

jitter performance. The large performance gap between RMG

and IW can be attributed to the use of LCRT. LCRT greatly

reduces packet delay variation caused by interference between

sibling nodes. The delay jitter improvement of RMG, as compared

to S-RMG, arises because the selection of reliable links aids

Fig. 9. The average delay jitter performance when the WMN size in Fig. 6
increases from 18 to 44.

Fig. 10. The average PSNR performance when the WMN size in Fig. 6 increases
from 18 to 44.

uninterrupted transmissions. We also found that the RMG delay

jitter of a few nodes closer to the sender’s non-closest gateway

cannot overtake their EM delay jitter. It is mainly because EM

uses internet shortcuts to decrease the wireless distance of these

nodes to the sender.

Fig. 10 shows the average multicast PSNR performance of the

five schemes. IR generates the worst average multicast PSNR

performance because it uses only wireless links to transmit

packets. The wireless broadcast property of wireless medium

causes severe signal interference/contention and fading in IR.

RMG achieves the best average multicast PSNR performance.

RMG’s superior performance for average multicast PSNR can be

explained by its formation of access areas (limiting the number

of wireless transmission hops and therefore reducing the problem

of signal fading as compared to EM), its employment of reliable

links to upload V to the Internet (greatly reducing signal loss as

compared to EM and S-RMG), and its construction of LCRT

trees (controlling the noise due to interference/contention as

compared to EM, IW, and S-RMG). RMG’s average multicast

PSNR performance under different simulated network conditions

is acceptable.

B. Evaluation using a large scale WMN

This section studies the impact of the WMN size on the per-

formance of the four multicast schemes EM, IW, S-RMG, and

RMG. We did not evaluate IR in the simulation because it is not
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Fig. 11. The wired backbone in the large scale simulation.

practical to use IR in a large scale network. As shown in Fig. 11,

the wired part of the integrated WMN topology is a combination

of two MCI-ISP backbone networks. Each router in the topology

represents a domain and therefore there are 35 domains in the

wired network. The wireless part, a WMN consisting of gateways

and mesh nodes, increases its size from 115 nodes to 250 nodes.

These nodes spread across 15 domains in Fig. 11 through 25

gateways. We set up 4 background flows to disturb the video

multicasting in the wireless part of the simulated network: 1

disturbance flow is introduced near to the video sender’s closest

gateway; the other 3 flows are introduced into non-source access
areas by nodes near to an AG or a corresponding gateway that

is a root of the LCRT tree in its access area. Transmission rates

of disturbance flows are randomly decided by the programs in

the range of [32Kbps, 256Kbps].
1) Impact of multicast group size on performance: The average

multicast delay of the four multicast schemes are shown in

Fig. 12. Note that IW achieves shorter delay performance than

EM does. This is because the sender in EM needs to upload the

flow to its closest gateway that is interfered by disturbance traffic

in the simulation. Hence, the flow in EM requires more time to

reach the receivers in another “island”. RMG achieves shorter

delays than IW. It shows the effectiveness of controlling sibling

transmissions (introduced in Fig. 2) achieved by LCRT in a large

size WMN. Also, it is observed that the use of an unreliable

link in the source access area adversely affects the multicast

reception by group members more significantly in a large area

WMN, than in a small area WMN. Therefore, the improvement

of delay performance that RMG overtakes S-RMG is better in

the large WMN simulation than in the small WMN simulation.

For the same reason of the small scale WMN simulation, a few

nodes closer to the non-uploading gateways in the source areas

achieve shorter delay performance in EM. Nodes in non-source

access areas of RMG achieve better delay performance with 100%
confidence than those of EM. The above observations suggest that

RMG suits large scale multicasting.

Fig. 13 shows the average multicast throughput for EM, IW, S-

RMG, and RMG when the WMN size increases from 115 to 250

nodes. The throughput of EM is lower as compared to those of

IW and RMG. A major reason for this phenomenon is because of

the disturbance traffic near to the video sender’s closest gateway.

The sender of EM passes video traffic to its closest gateway, but

IW and RMG choose a gateway with a good condition (i.e. a good

balance between high available capacity and good reliability) to

connect for integrated video multicasting. These results prove that

the backhaul to wired resources should consider dynamic network

conditions to avoid bottleneck gateways. Furthermore, with the

use of reliable LCRT, RMG performs best.

Fig. 14 compares the average multicast delay jitter of the four

multicast schemes. When increasing the WMN size, the level

Fig. 12. The average delays when the WMN size increases from 115 to 250.

Fig. 13. The average throughput performance when the WMN size increases
from 115 to 250.

Fig. 14. The average delay jitter performance when the WMN size increases
from 115 to 250.
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Fig. 15. The average PSNR performance when the WMN size increases from
115 to 250.

Fig. 16. The average multicast throughput performance varies with the number
of gateways in the source access area.

of jitter of IW is better than that of EM because of the positive

effectiveness of the WGU algorithm. The jitter of all four schemes

increases with increasing WMN size. However, the jitter of RMG

is controlled within the delay jitter bound of wireless communica-

tions (30ms). These results prove the advantages of using LCRT

with reliable links in RMG in reducing the interference between

sibling transmissions.

Fig. 15 shows the average multicast PSNR performance for the

four schemes. As observed, RMG achieves the best average

multicast PSNR performance, while, expectedly, the PSNR drops

with an increase in the size of the WMN. The plotted results in

this figure can be explained by the similar reasons for the results

in Fig. 10.

2) Impact of number of gateways and number of nodes in an
access area: This section studies the impact of the number of

gateways and the number of nodes in the source access area on

the performance of RMG. We vary the number of gateways per

source access area from 1 to 5 and the number of mesh nodes

per source access area from 5 to 45 respectively - this is done by

explicitly placing gateway nodes (for a given topology) to ensure

that a source or receiver is within K hops of the specified number

of gateway nodes. Mesh nodes are uniformly distributed in the

source access area with the density of 3 nodes per transmission

range. The total number of nodes in other access areas are 160.

Fig. 16 shows the average multicast throughput of RMG when

the number of gateways in each source access area varies from 1

Fig. 17. The average throughput performance varies with the source access area
size and the number of gateways.

to 5 and the number of nodes in each source access area is 10, 25

and 45. The figure shows that multicast throughput increases with

an increase in the number of gateways in the source access area,

illustrating that the use of multiple gateways can significantly

improve the throughput of an integrated network.

Fig. 17 shows how the number of nodes in a source access area
affects the average throughput of RMG. It shows that increasing

the size of a source access area has a negative effect on the

throughput. However, this can be corrected by increasing the

number of gateways per source access area.

3) Impact of access area threshold K: We now observe K’s

impact on video performance. The simulation employs the back-

bone in Fig. 11 to connect WMN gateways for the video

communications in a group of 260 WMN nodes. Table III lists

the video performance (average throughput) achieved and the

system resources (WMN gateways) required by the resource-
aware multi-gateway WMN multicasting scheme when the access
area varies. Increasing K degrades video performance, as the

video traffic experiences more interference when traversing a

larger number of wireless links. WMN video communications

tend to prefer intra-mesh routing when K becomes large enough.

This is verified by our results which show that the number of

required WMN gateways decreases with increasing K. Moreover,

the results in the table show that varying K presents a trade-

off between high video performance and low system resources,

validating our observation of a trade-off between (rV )basic and

ρ in (1). In practical applications, as we have analyzed in (1),

K can be determined according to the desired performance and

the practical system conditions, such as mesh node average

distribution density and one-hop distance. In our simulations,

if we put the following simulation parameters into (1): C =
11Mbps, rV = 500Kbps, (rV )basic = 250Kbps, κ =

√
2,

the link loss rates in the range of [0, 0.2], and the node density

distribution which guarantees that there are on average 3 nodes

covered by one transmission range, we have K ≈ 3.11 which

closely meets the simulation observation that K = 3 is the best

choice when considering both video performance and consumed

network resources.

C. Evaluation of dynamic group performance

This section presents simulation results to evaluate the perfor-

mance of EM and RMG when group members dynamically
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TABLE III

VARIATION OF AVERAGE THROUGHPUT AND NUMBER OF WMN GATEWAYS

WITH DIFFERENT KS.

K 2 3 4 5 6 7 8

Average 312.5 287.8 245.6 200.5 159.3 130.2 117.3
throughput
(Kbit/s)

Number 48 25 18 16 16 16 15
of WMN
gateways

Fig. 18. Control overhead created in maintaining dynamic group membership.

change. There are 350 multicast nodes. The simulation period

is 300 seconds and includes two different phases: a join phase

and a broken link phase. In the join phase, 64 new hosts join

the group uniformly at random between the simulated time 80

and 130 seconds. In the broken link phase, 10 wireless links

break at a time uniformly distributed between 180 seconds and

230 seconds. The results in Fig. 18 show that EM and RMG

generate similar amounts of overheads when admitting new group

members. However, the join procedure of EM nodes is based on

the periodic advertisements which introduce more control packets

to the WMN. These overheads are not plotted in the figure in

order to clearly compare the performance of two protocols to deal

with dynamic changes. As for the control overheads generated

by recovering broken links, the simulation results show that

RMG generates less overheads than EM. In EM, when a node

detects interruption, it depends on the advertisements of other

nodes to rebuild the connection to the multicast group. In RMG,

some broken links are recovered by the backup channel without

requiring a new upstream node. Although EM can also explore

the backup channel recovery, the periodic advertisements may

still introduce more overheads (not shown in the figure) into the

WMN. Overall, our simulations establish that RMG can achieves

lower multicast delay and jitter, and higher video throughput, than

EM, without incurring any additional overhead.

VI. CONCLUSIONS

The paper described and studied a resource-aware multi-gateway
video multicasting framework for WMNs that reduces the nega-

tive impacts of multiple wireless hops by judiciously employing

high capacity wired Internet shortcuts. This framework allows

high-bandwidth multicasting to be performed over a wide ge-

ographic area. The two-tier integrated architecture algorithm

chooses communication paths - intra-mesh paths or integrated
paths - between nodes by organizing them into a clustered and

layered architecture; the weighted gateway uploading algorithm

avoids “busy” gateways by uploading video in a manner that

balances load and reliability; the link-controlled routing tree al-

gorithm decreases interference from parallel multicasting by con-

structing a multicast tree with the least number of forwarders in

each access area; and the dynamic group management algorithm

provides low-overhead maintenance of the multicast forwarding

trees when dynamic changes take place. Our design principles are

validated by our extensive simulation results, showing that the

multicasting algorithms can achieve up to 40% more throughput

than other related published approaches.

Our hierarchy architecture is flexible enough to incorporate

progressively sophisticated enhancements to each individual al-

gorithmic phase. For example, while the access area construction

uses a hop count threshold to avoid the usage of excessive

wireless links, this static metric can be easily replaced by a

dynamic metric (e.g. delay distance threshold). Moreover, the

architecture dynamically changes with the variation of video

performance and group membership. In general, our scheme not

only achieves high-performance video multicasting of a single

flow but also enables a WMN to admit more video streams

because of the balance in using wired and wireless resources and

the controlled overheads. These improvements require the use of

multiple gateways within the distance of K wireless hops for a

source access area or (K − k) wireless hops for a non-source

access area.

In future work, we plan to enhance this integrated approach

to better support the concurrent transmission of multiple, time-

varying multicast flows, as well as investigate the use of multiple

distinct integrated paths for the transmission of layered video

within a single multicast flow.
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