
Real-Time Pedestrian Evacuation Planning During Emergency

Tarik Hadzic, Kenneth N. Brown, Cormac J. Sreenan

Cork Constraint Computation Centre and Mobile and Internet Systems Laboratory
Department of Computer Science, University College Cork

Ireland

Abstract—We develop a set of solution techniques for real-
time evacuation guidance of pedestrians during emergency,
focusing on evacuation from buildings during a fire. We model
the problem as an extension of a dynamic network flow
by allowing for nodes and edges to expire over time. This
captures evacuation situations where the spreading hazard
renders parts of the network unavailable. We formally state
the problem, analyze its complexity, develop a set of heuristic
approaches and compare their performance against a number
of most relevant alternative approaches. We experimentally
demonstrate that our heuristics outperform the alternatives
and are suitable for real-time use even for large networks.

Keywords-evacuation planning; dynamic network flows;
heuristics;

I. INTRODUCTION

Evacuation planning involves constructing plans for rapid

movement of people from an area affected by emergency,

such as a city threatened by a hurricane or a building on

fire. However, these plans are traditionally constructed only

to prepare for emergency, long before more information

is available about the actual threat. The same evacuation

plans are to be used regardless of the origin of hazard

and location of people, which might render them unsafe.

However, recent sensor technology allows us to track the

location of people and the spread of hazard, while intelligent

direction-signalling hardware (visual, audio, tactile) and

ubiquitous smart phones make it possible to communicate

dynamically changing evacuation directions to evacuees.

We therefore suggest computing evacuation plans during
emergency, optimized specifically for the ongoing situation,

and updated as the emergency evolves. An evacuation plan

is recomputed as the new sensor input becomes available.

The challenge is to ensure that 1) computed plans are of high
safety, that 2) they can be computed and communicated to

evacuees in real-time and that 3) they can scale to realistic

problem sizes. This paper presents a solution approach that

satisfies the above requirements.

We model our problem as a dynamic network flow

[1] where network topology abstracts the building design:

arcs represent corridors while nodes represent rooms, open

spaces, doors and junctions. Arc transit times and capacities

capture the length and width of the corridors, while node

capacities capture the area of corresponding locations. Flow

represents the occupants, and the movement of flow from

initial nodes to a designated exit node represents the evac-

uation process. In addition, we model the spread of hazard

through the network by estimating hazard arrival time for

each node. The problem is to maximize the amount of flow

that can reach an exit without exposure to hazard.

Dynamic network flows have been studied for decades

as a modeling and reasoning framework for evacuation

and transportation problems [1], [2], [3]. However, unlike

the agent-based simulation approaches, this framework is

unable to incorporate behavioral characteristics of individual

evacuees or more subtle geometric interactions during the

movement of people. Therefore the simulation-based frame-

works are a preferred choice for evaluating the movement

of people following a specific evacuation plan. However,

the computation-intensive nature of simulation executions

and real-time computational requirements in our setting

makes it highly unlikely that any such approach would be

feasible for computing evacuation plans. Therefore, the flow-

based framework offers a reasonable compromise: while

it approximates certain aspects of evacuation behavior, it

allows for more efficient solution approaches. We could

compensate for flow model inaccuracies and uncertainties

in the hazard prediction by rapid plan recomputation each

time the sensed data deviates from previous predictions.

The main contribution of this paper is development of

a family of flow-based heuristics that produce high quality

evacuation plans in real-time for large instances. Heuristics

repeatedly chose a departure node, a dispatch time, a path to

an exit and the number of people to send. The choices are

based on a novel concept of node and path priorities, so that

given multiple options, nodes and paths with higher priority

are preferred. Experiments demonstrate that our heuristics

are superior to alternative approaches. A classical exact

approach to dynamic network flows, based on time-expanded

graphs, does not scale, taking minutes to compute routes

for moderately sized networks. Simple and traditionally

used congestion-oblivious heuristics that ignore capacity

constraints, although much faster, produce solutions of much

lower quality. Our hazard-aware adaptation of the most

relevant flow-based heuristic [4] also produces solutions

of inferior quality. In comparison, our approach is able to

evacuate more than 94% of the numbers evacuated by exact

approach, while being able to communicate evacuation in-

structions in a fraction of a second. Therefore, our heuristics

2011 23rd IEEE International Conference on Tools with Artificial Intelligence

1082-3409/11 $26.00 © 2011 IEEE

DOI 10.1109/ICTAI.2011.95

597

constitute a state-of-the-art solution approach to the problem

of real-time evacuation planning.

II. BACKGROUND AND RELATED WORK

Evacuation and transportation problems are normally

modeled using dynamic network flows [1], an extension of

classical network flow theory. The term ”dynamic” refers to

the fact that flow takes time to traverse the edges and does

not imply that the underlying graph is changing. A building

(or a road network) is modeled as a dynamic network, i.e.

a directed graph G(V,E) where nodes ui ∈ V represent

locations, rooms and junctions, while edges represent corri-

dors and roads. A directed edge between nodes ui and uj

is denoted as (ui, uj) or just eij . Each edge is labeled with

transit time d(ui, uj) (or dij) and capacity c(ui, uj) (or cij)

to represent speed of movement and congestion constraints.

A unit of flow (a person) entering edge eij at time t will

reach node uj at time t+ dij . At most cij units of flow can

enter the edge eij at the same time. Nodes are labeled with a

capacity a(ui) to denote the maximum number of people that

can occupy the node. All nodes have an initial occupancy

at t = 0 of s(ui). S ⊆ V is the set of source nodes, where

s(ui) > 0. We assume a single exit node e ∈ V . Multiple

exits can be modeled by linking them to a superexit with 0

transit time and infinite capacity. The problem is to find the

flow (allocation of people to edges over time) that minimizes

evacuation time while respecting the flow constraints.

Consider an example in Figure 1. A floor topology is

shown in Figure 1(a) where rooms A and B contain 10

people each (while having capacity of 20 people). The width

of each corridor allows 5 people to enter simultaneously. The

corresponding dynamic network is shown in Figure 2(b).

It consists of nodes V = {u1, . . . , u5}. Nodes u1 and u2

correspond to rooms A and B so that s(u1) = s(u2) = 10,

a(u1) = a(u2) = 20. Nodes u3 and u4 model the junc-

tions, that are empty initially s(u3) = s(u4) = 0 and at

most 8 people can fit into each junction simultaneously,

a(u3) = a(u4) = 8. Node u5 is an exit node, it is

initially empty s(u5) = 0, and there is no restriction on

the number of people that can enter it, a(u5) = ∞. The

capacity of each edge c(ui, uj) = 5 while transit times are

proportional to the length and are illustrated on the graph:

d13 = 1, d14 = 1, d23 = 1, d24 = 1, d45 = 2, d35 = 8.

A corresponding solution to the minimal-time evacuation

problem is presented in Table I: column Time indicates the

departure time, column Flow the amount of flow and column

Path the path traversed by the flow. The last unit of flow

reaches exit at time 6.

The standard approach to solving dynamic flow problems

[1] is to transform the graph G = (V,E) into a time-
expanded network [2]. For a given time horizon T , a time

expanded network GT (VT , ET) is constructed by creating a

copy of each node in V for each time unit (VT = {u(t) |
u ∈ V, t ∈ {0, 1, . . . , T}}). An edge (u(t), w(t + k)) with

(a) Floor Topology (b) Dynamic Network

Figure 1. Floor topology and the corresponding dynamic network.

Table I
AN EVACUATION PLAN FOR THE PROBLEM IN FIGURE 1.

Time Flow Path
0 5 (u1, u4, u5)
1 5 (u1, u4, u5)
2 5 (u2, u4, u5)
3 5 (u2, u4, u5)

capacity c is added to ET if there is an edge (u,w) ∈ E
with transit time k and capacity c. ET also contains holdover
edges (u(t), u(t+ 1)) with capacity a(u) to designate flow

that waits at node u from time t to t+1. This time-expanded

network allows all variations of dynamic flow problems to

be solved by polynomial static flow algorithms over the

expanded graph. However, the expanded graph is larger by a

factor of T which makes the entire solution process pseudo-
polynomial. The major computational bottlenecks are the

time and memory needed to construct the expanded network

[2], [3]. The quickest evacuation problem can be seen as a

transhipment problem with multiple sources and a single

sink. [5], [6] proved the polynomial time complexity of

the quickest transhipment problem by an approach based

on temporally repeated chain-decomposable flows. How-

ever, their solution employs a highly expensive submodular

function minimization algorithm as a subroutine, which

makes it unsuitable for practical use. There are a number

of evacuation models based on dynamic network flows [2],

[3]. However, none explicitly model the spread of a hazard

throughout the network. The most relevant approach is based

on minimal lexicographical flows [7] that divides a building

into priority zones, and searches for a solution that evacuates

highest-priority zones in quickest time.

Other researchers have suggested using hazard spread to

inform the evacuation plans. For example, in [8] the hazard

forecast is based on a hazard graph, which estimates the

time a hazard needs to reach nodes in the building. However,

they ignore flow constraints. Finally, [4] consider capacity
constrained routing heuristics, which keeps reserving evac-

uation paths and departure times from source nodes to the

exit as long as there is unreserved flow left. The heuristic

598

observes the capacity constrains by reserving capacity at

edges at future time points.

III. PROBLEM FORMULATION

We now extend the dynamic flow model by associating

expiry times with nodes and edges to represent the progress

of a hazard. The topology of the underlying graph is there-

fore not constant as nodes and edges become unavailable.

Each node u ∈ V and each edge (ui, uj) ∈ E have an expiry

time, T (u) and T (ui, uj) respectively, denoting the last time

points at which they can be safely used for flow traversal.

In this paper we assume that only the expiry times of nodes

are given, since the edge expiry times can be inferred as:

T (ui, uj) = min{T (ui), T (uj) − d(ui, uj)}, (ui, uj) ∈ E,

i.e. the edge (ui, uj) cannot be safely traversed at time t if

the start node ui is unsafe before time t or if the end node

uj becomes unsafe before the flow reaches it.

Figure 2 presents an extension of our example from

Figure 1 where a presence of the fire is detected. The

projected expiry times of nodes u1, . . . , u5 are 7, 5, 9, 3 and

11 respectively. The evacuation plan from Table I is not safe
since the evacuation route departing at time 3 and sending

5 units of flow through the path (u2, u4, u5) is traversing

node u4 at time 4, i.e. after its expiry time T (u4) = 3.

(a) Floor Topology (b) Dynamic Network

Figure 2. Floor topology and its dynamic network in the presence of
hazard.

In such scenarios we want to evacuate as many people

as possible, as safely as possible. We introduce the maxi-
mal safe evacuation (MSE) problem, that captures a core

algorithmic challenge associated with achieving the above

goals.

Problem 1 (MSE): Given a dynamic network G(V,E),
with edge transition times d(u, v), edge capacities c(u, v),
node capacities a(u), node supplies s(u) and node expiration

times T (u), u ∈ V, (u, v) ∈ E, find an evacuation plan that

sends the maximal amount of flow from sources u ∈ S
to exit e traversing only the edges and nodes that are not

expired.

To formally state the problem we will use notation from

[3]. Let xij(t) denote the flow moving through the edge

(ui, uj), starting at time t and reaching node uj at time

t+dij . Furthermore, let y(t+1) denote the amount of flow

waiting at node ui from time t to time t + 1. Let pred(u)
denote the set of nodes v such that (v, u) ∈ E and succ(u)
denote nodes v such that (u, v) ∈ E. Let time horizon T
denote the expiration time of the exit, T = T (e). The MSE

solves the following problem:

max
T∑

t=0

∑

u∈pred(e)

xue(t) (1)

yi(t+ 1)− yi(t) =
∑

uk∈pred(ui)

xki(t− dki)−
∑

uj∈succ(ui)

xij(t), 0 ≤ t ≤ T, ui ∈ V
(2)

yi(0) = s(ui), ui ∈ V (3)

0 ≤ yi(t) ≤ a(ui), 1 ≤ t ≤ T (4)

0 ≤ xij(t) ≤ cij , 0 ≤ t ≤ T − dij , (ui, uj) ∈ E (5)

xij(t) = 0, T (ui, uj) < t ≤ T − dij , (ui, uj) ∈ E (6)

The objective function (1) states that we want to maximize

the amount of flow reaching an exit within time horizon

T . Equation (2) is a set of flow-preservation constraints.

Equation (3) sets the initial flow at each node, while equation

(4) and equation (5) enforce the node and edge capacity con-

straints. The constraints (2)-(5) state the classical problem of

maximizing the dynamic flow within a time horizon T . The

main difference is the addition of the expiration constraints
in equation (6) that forbid flow traversal over expired edges.

Observation 1: The MSE problem is solvable in polyno-

mial time.

Proof Outline: This can be seen by a reduction to the

quickest transhipment problem with mortal edges with start

time αu and end time βv , proven by [5] to be polynomially

solvable. By taking αu = 0 and βv = T (u, v) for all (u, v) ∈
E, and by setting the demand of the exit node e to a given

flow value F , the solution to an MSE problem sends at least

F units of flow if and only if the quickest transhipment

problem has a solution. By changing the demand F through

a binary search, we can find the maximal amount of flow for

which the quickest transhipment problem returns a solution.

Unfortunately, the solution method of [5], [6] requires

solving highly expensive (but polynomial) optimization sub-

problems, and is too slow for practical use. Since this is the

best known solution algorithm for the quickest transhipment

problem, and quickest transhipment can be encoded as MSE,

we suspect that any exact solution to MSE will also be too

slow for practical use on large problems.

599

IV. FLOW-BASED HEURISTIC FRAMEWORK

Given that it is unlikely that an exact polynomial so-

lution approach would be efficient in practice, we focus

on development of efficient and safe heuristic approaches.

The main contribution of this paper is a development of a

family of flow-based and hazard-aware heuristic approaches

to construct evacuation routes that respect expiry times based

on the notions of node priority and path priority.

We first sort the nodes according to node-priority, so that

sending flow from the most critical nodes is scheduled first.

Then, for each node, and earliest possible departure time,

we search for an evacuation path and the departure time that

satisfies the expiration and the flow constraints while taking

into account the previously reserved flow. We search for a

path of the highest path-priority among all such paths. Once

the path p is found, its capacity c(p) is computed as the

largest amount of flow that can be sent though p without

violating the constraints. Finally, the c(p) amount of flow

is reserved for a given path and departure time. We keep

sending the flow over such paths until either there are no

paths left (in which case not all the flow from the source can

be sent) or until all the flow has been allocated to evacuation

paths. Algorithm 1 illustrates our overall heuristic approach.

Algorithm 1: Heuristic Approach

sort nodes u ∈ V according to node-priority;
for each source node u ∈ S in priority order do

//schedule flow from u;
departure time t = 0;
while t ≤ T (u) do

Find feasible path p from u to terminal, departing at
t, with highest path priority;
if no such p exists then

t++;
continue;

c(p) ← minimal edge capacity on path p;
s(u) ← s(u)− c(p);
reserve c(p) flow;
if s(u) = 0 then

break;

We rely on flow reservation, a mechanism used originally

in [4]. To reserve g units of flow over an edge (ui, uj)
at time t means to increase the value of variable xij(t) to

xij(t)+g from the system of equations (1)-(6). The capacity

of the edge (ui, uj) at time t with respect to reserved flow

is c(ui, uj)− xij(t). Hence, our algorithm finds only paths

that satisfy the edge capacity constraints (5). It is important

to note that the algorithm finds only paths that do not allow
waiting at intermediate nodes, i.e. as soon as flow arrives

at intermediate node it enters the following edge on the

path. This guarantees that the flow preservation constraints

(2) are observed during the execution and that the node-

capacity constraints (4) are observed, since no unit of flow

is allowed to wait and therefore increase the node occupancy.

Furthermore, our path-finding procedure ensures that the

path never traverses an expired edge. Hence we can claim

the following:

Observation 2 (Correctness): Algorithm 1 finds flows

that are solutions to the MSE problem.

Note that restricting evacuation paths to no-waiting paths
(that do not allow waiting at intermediate nodes) does not

restrict the generality of our approach. It suffices to update

the dynamic network by adding for every node ui a loop
edge (ui, ui) with capacity c(ui, ui) = a(ui) and transit time

d(ui, ui) = 1 to ensure that any path that allows waiting on

original dynamic network corresponds to a no-waiting path

on the updated network.

Our algorithm in worst case computes a path for each

unit of flow F =
∑

u∈V s(u). Complexity of computing

an evacuation path in worst case corresponds to linear-time

traversal over implicitly-represented time-expanded graph

O(|V ||E|T 2). This leads to the overall worst-case time

complexity of O(|V ||E|FT 2).

Early-Notification Variant. Algorithm 1 can be modified

based on the following insight: an evacuation planning

algorithm is suitable for real-time use as long as it produces

evacuation routes for evacuees prior to their scheduled

departure time. That is, for people that are scheduled to

start moving later it is acceptable to receive the evacuation

instructions later. We therefore suggest a modification to

Algorithm 1 which computes all evacuation paths that depart

at time t before computing paths for departure time t+1. To

implement this modification it suffices to switch the two iter-

ation loops in Algorithm 1: outer loop iterates over departure

time t while the inner loop iterates over nodes according to

node-priority order. The critical advantage of this approach

is that the portion of evacuation plan computed for departure

time t can be immediately communicated to corresponding

evacuees. This gives raise to an additional metric by which

to evaluate the algorithms, the communication delay, which

expresses the maximal time difference between computation

time of an evacuation route, and its corresponding departure

time. If the communication delay is small, the algorithm is

adequate for real-time use even if the total computation time

is large. Note that the communication delay of Algorithm 1

corresponds closely to the total computation time since the

evacuation routes departing at time 0 can be allocated even

during computations for the last node in priority order.

A. Node and Path Priorities

We will now describe the various versions of the flow-

based and expiration-aware heuristics. The heuristics only

differ in the choice of the node-priority and path-priority
criteria and can be easily integrated into Algorithm 1 and

its early-notification variant. We denote with u1 ≺ u2 the

fact that u1 will be processed before u2 with respect to the

ordering criteria. Analogously, for paths p1, p2 starting at the

600

same time, we denote with p1 ≺ p2 the fact that p1 will be

selected before p2.

1) Path Priorities: We consider two path priorities, the

Max-Safety and Min-Distance.

The Max-Safety priority prefers evacuation routes with

the highest estimated lead-time, where lead-time denotes

the minimal time-distance between traversal of a node on

the path and its expiration. For a given evacuation route

p(u1(t1), u2(t2), . . . , uk+1(tk)) which traverses each node

ui at time ti, we define lead-time(p) = min{ti − T (ui) |
i = 1, . . . , k + 1} and

p1 ≺ p2 ⇔ lead-time(p1) ≥ lead-time(p2).

The selection of the exit paths based on maximal lead-

time was proposed in [8], where the authors referred to it

as safety. However, it was used in settings where capacity

constraints were ignored.

Let d(p) denote the length of the path with respect to

transition times. For two paths p1, p2 between the node u
and the exits the Min-Distance heuristic prefers the shorter

route:

p1 ≺ p2 ⇔ d(p1) ≤ d(p2).

2) Node Priorities: We consider three node priorities, the

Smallest Expiration, Smallest Max-Safety and Largest Min-
Distance.

The Smallest Expiration heuristic first processes nodes

with the smallest expiration time, i.e.

u1 ≺ u2 ⇔ T (u1) ≤ T (u2).

A node might be further from the expiration point, but the

routes from the node to an exit might inevitably lead over

nodes at times close to their expiration. Let the lead-time of a
node be the lead-time of its safest exit route: lead-time(u) =
max{lead-time(p) | p is an exit route from u}. The

Smallest Max-Safety heuristic prefers nodes with smaller

lead-time, i.e.

u1 ≺ u2 ⇔ lead-time(u1) ≤ lead-time(u2).

The Largest Min-Distance heuristic first processes nodes

that are furthest away from the exit, using the shortest

feasible paths. Formally, let sp(u, v) denote the length of the

shortest path between u and v. Let sp(u) = min{sp(u, e) |
e is a terminal}, denote the shortest distance to a terminal

from the node u. The heuristic first processes nodes so that:

u1 ≺ u2 ⇔ sp(u1) ≥ sp(u2).

3) The Selection of Flow-Based Heuristics: We focus

here on three particular combinations of the priorities, lead-

ing to the heuristics described in Table II. Other combina-

tions are of course possible as well.

Table II
SELECTION OF FLOW HEURISTICS.

Heuristic Node Priority Path Priority
H1 Smallest Expiration Max-Safety
H2 Smallest Max-Safety Max-Safety
H3 Largest Min-Distance Min-Distance

V. ALTERNATIVE SOLUTION APPROACHES

To evaluate our heuristics we compare them against the

most relevant alternative solution approaches in the litera-

ture. In this section we describe these alternatives.

A. Congestion-Oblivious Approaches

We first consider the class of congestion-oblivious heuris-

tics, which compute evacuation routes based on a distance

to an exit or a proximity to a hazard, while ignoring the

number of evacuees. These heuristics are easier to deploy

from technological point of view and so we consider them to

investigate whether these simpler approaches are sufficient,

thus making our more sophisticated heuristics redundant.

The most commonly used is the shortest-distance heuris-

tic. In most buildings, evacuation maps that are displayed

to occupants typically indicate the shortest route to an

exit. They are extremely easy to implement - already in

design phase of a building the shortest routes are known.

However, they ignore the number of evacuees and location

of hazard. They can therefore steer people towards the fire

or cause congestion. Figure 3(a) illustrates shortest-distance

evacuation routes while Table I (on page 2) represents a

corresponding solution that observes flow capacities..

(a) Shortest Path Evacuation (b) Safest Path Evacuation

Figure 3. Path-based solution approaches.

We also consider the safest-path heuristic proposed in [8].

For each node u it computes a max-safety path to an exit.

It does take into account the spread of hazard but ignores

the number of evacuees, thus possibly causing congestion.

Figure 3(b) illustrates safest-path evacuation routes, while

Table III shows a corresponding solution that observes flow

capacities.

Please note that neither Table I nor Table III represent

a safe solution. For example, the fourth evacuation path in

Table III, departing at time 3 and sending 5 units of flow

601

Table III
AN EVACUATION PLAN FOR THE PROBLEM IN FIGURE 3(B).

Time Flow Path
0 5 (u1, u3, u5)
1 5 (u1, u3, u5)
2 5 (u2, u3, u5)
3 5 (u2, u3, u5)

along the path (u2, u3, u5) reaches exit u5 at time 12 which

is after the exit expiry time, T (u5) = 11.

B. Flow-Based Exact Approach

We also consider the exact approach which solves flow

problems to optimality. If exact approach produces evacu-

ation plans of significantly higher quality with comparable

efficiency, then our solution approach would be inadequate.

We adapted the solution approach based on time-expanded

graphs (described on page 2). We represent the expiration

constraints by deleting all edges and nodes after their expiry

time (delete all (ui(t), uj(t + dij)) where t > T (ui, uj)),
and we select a time horizon based on the expiry of the exit,

T = T (e). By solving the maximal flow problem over the

resulting static network using the Edmonds-Karp algorithm

[9] we compute the maximum amount of flow that can reach

the exit by time T .

C. CCRP-Based Heuristic Approach

The most related approach in the literature is the heuristic

solution technique used in the capacity-constrained routing
planner (CCRP) [4]. The authors construct evacuation plans

with a goal to minimize egress time by repeatedly reserv-

ing earliest arrival paths. Just like in our work, the path

reservation is handled implicitly using (what authors refer

to as) time-series data structures. The authors do not provide

sufficient details about the procedure they use to compute

earliest arrival paths so exact reproduction of their work is

not possible. However, we made the best effort to ensure a

fair comparison by implementing their techniques using the

same data structures that are used for our own heuristics.

Furthermore, we implemented a hazard-aware version of

the CCRP algorithm, where earliest evacuation paths are

computed only over safe edges.

VI. EXPERIMENTS

We ask the following question in our empirical evaluation:

Can the flow-based heuristics provide high-safety evacuation

plans in real-time for large realistic instances? Can any of

the alternative approaches provide comparable performance?

We execute our experiments over a set of grid in-

stances. For a given dimension n1 we create a square grid

with n = n1 · n1 nodes. For each pair of neighboring

nodes u1(i1, j1), u2(i2, j2) we introduce two directed edges

e(u1, u2), e(u2, u1). For each node u, we randomly select

its capacity a(u) ∈ [1,maxNodeCapacity]. Initial supply

s(u) is selected to reflect an uneven distribution of people

that can be found in a university building, with 5% of large

lecture halls of random occupancy of up to 200, 30% of

medium lecture halls with random occupancy of up to 50,

25% of meeting rooms with random occupancy of up to 10

and remaining 40% of office spaces with occupancy of up

to 3 people. For each edge, e(u, v) we randomly select its

capacity c(u, v) ∈ [0,maxEdgeCapacity] and its traversal

time d(u, v) ∈ [1,maxEdgeDistance]. We select an exit

node e to be in the lower right corner of the grid. We then

generate expiration times T (u), u ∈ V . We first select a

node s ∈ V placed in the center of the grid to be the origin

of a fire, and then assign expiration times T (u) proportional

to their shortest-path distance from the origin, sp(s, u): we

set T (u) = sp(s, u) · fireSpeed , where fireSpeed denotes

how slowly fire spreads in comparison to flow traversal. We

use fireSpeed = 5. All experiments are executed as a single

process on a dual Quad core Intel Xeon processor running

at 2.66 GHz, with the Fedora 9 operating system.

A. Comparison Against Alternative Approaches

In the first set of experiments we compare the performance

of our heuristics H1, H2, H3 (defined on page 5) using

Algorithm 1 against the alternative solution approaches from

Section V: congestion-oblivious approaches, flow-based ex-

act approach and the CCRP-based heuristic. First, we grad-

ually increase the grid size. The results are reported in the

upper part of Table IV and represent average values over

100 trials. The input parameters for the random generation

were maxNodeCapacity = 50, maxEdgeCapacity = 10,

maxEdgeDistance = 20. Column Grid is the grid di-

mension n1; T is the average time horizon T for the time-

expanded graph, chosen to be the expiry of the exit node

e; Supply is average total initial flow (number of people).

Fex, Fh1, Fh2 , Fh3 and Fccrp denote the amount of

flow that reaches the exit within the time horizon T for

the exact, our heuristic approaches and the CCRP heuristic

respectively. Columns tex, th1, th2, th3 and tccrp denote

the corresponding computation times in seconds. Finally,

Fob1 and Fob2 report the amount of flow that safely reaches

the exit using the congestion-oblivious shortest-distance and

safest-path heuristics respectively. We do not report their

running times as they execute within a few milliseconds.

The results clearly confirm that the exact approach is too

slow to be used in real-time settings, even for instances of

moderate size, taking about 10 minutes to compute optimal

evacuation plans for instances with 225 nodes 1. Secondly,

the oblivious heuristics generate plans of inadequate quality.

For small instances they evacuate over 85% of the number

evacuated by the exact approach, but this quickly deteriorates

1This is despite our best efforts to optimize implementation of the time-
expanded graph to exploit the sparsity of the network. Initial versions of the
same algorithm, that used the incidence-matrix representation were orders
of magnitude slower.

602

Table IV
COMPARING EXACT, FLOW-BASED HEURISTIC AND CONGESTION-OBLIVIOUS HEURISTIC APPROACHES.

Grid T Supply Fex Fh1 Fh2 Fh3 Fccrp tex th1 th2 th3 tccrp Fob1 Fob2

5 145 296 266 258 259 258 236 0.73 0.0 0.0 0.0 0.0 184 231
7 214 611 582 569 572 571 527 6.05 0.01 0.01 0.01 0.01 373 450
9 263 1099 1047 1011 1017 1008 894 27.52 0.03 0.03 0.03 0.03 581 702

11 317 1683 1573 1501 1517 1503 1332 86.78 0.09 0.08 0.08 0.07 772 956
13 384 2292 2094 1993 2011 1975 1709 244.75 0.25 0.22 0.23 0.14 956 1129
15 438 3074 2769 2581 2607 2514 2136 595.96 0.68 0.56 0.6 0.25 1038 1374

10 255 440 440 440 440 440 437 38.87 0.2 0.03 0.06 0.14 341 437
10 255 870 870 870 870 870 858 40.27 0.02 0.02 0.06 0.03 591 833
10 255 1105 1105 1105 1105 1085 1063 40.93 0.03 0.03 0.03 0.04 590 893
10 255 1420 1420 1406 1420 1381 1145 40.67 0.04 0.04 0.05 0.04 743 1054
10 255 1750 1750 1664 1687 1658 1198 41.25 0.07 0.07 0.08 0.04 798 1163
10 255 2335 1999 1723 1759 1854 1330 41.39 0.12 0.14 0.12 0.04 853 1240

to about 50% for the instance with 225 nodes. However,

the safest-path oblivious heuristic performs noticeably better

than the shortest-distance heuristic. The CCRP-based heuris-

tic performs significantly better than oblivious heuristics,

but still suffers from inadequate quality, which deteriorate

to 77% for the largest instance. The flow-based heuristics,

however, achieve significantly higher quality results with

small running times. On average, our best-performing flow-

based heuristics produce plans achieving more than 94%

of the quality of the exact approach, but computing almost

1000 times faster. A computation time of under 1 second

clearly allows for frequent replanning as events happen

for moderately sized instances. All three heuristics have

comparable performance, with heuristic H1 being slightly

outperformed by the other two.

The first experiment discussed above considered instances

where, on average, it was not possible to get all the flow out

before the exit expires, even for the exact approach. This

might bias our results, as some approaches (in particular

the congestion-oblivious heuristics) might perform better

in looser scenarios where all the initial flow can escape.

We therefore fixed one of the 100 node instances, and we

varied the initial supply of flow by setting for each node

u its initial supply s(u) ∈ [0,maxNodeSupply], where

maxNodeSupply parameter is gradually increased from 10

to 50. The results appear in the lower part of Table IV. We

can see that the safest-path congestion-oblivious heuristic

does perform better for low concentrations of people, but for

concentrations of 10 or more people per room suffers from

significant quality deterioration even if the exact approach

is capable of evacuating all the people. We also notice a

gradual increase in computation time for our flow-based

heuristics. While the performance of the exact approach is

still too slow, it does not deteriorate with the increase in

supply. This is consistent with the performance guarantees

provided by the Edmonds-Karp algorithm which do not

depend on the amount of initial supply.

B. Scalability Study and Early Notification Version

In the first set of experiments we concluded that the exact

approach is too slow for real-time use while the congestion-

oblivious approaches and CCRP-heuristics suffer from poor

quality, thus leaving our flow-based heuristics as the pre-

ferred approach. In the second set of experiments we per-

form a scalability study of our heuristics H1, H2, H3 using

Algorithm 1 and their early-notification variants, denoted as

H1v, H2v and H3v respectively. For each heuristic we report

the number of evacuated people F1, F1v, F2, F2v, F3,

F3v, and their corresponding running times t1, t1v, . . . , t3v.

In addition, we report the communication delay for early-

notification variants of our heuristics (described on page 4),

denoted as t1vd,t2vd,t3vd assuming that 1 time unit in an

evacuation plan corresponds to 1 second. We report results

over grid instances with dimensions 5, 10, . . . , 35, i.e. for

graphs of up to 1225 nodes.

The experimental results are presented in Table V and

represent average values over 100 trials. The average flow

values are rounded to a nearest integer value. We can observe

the following:

1) Both the standard flow-based heuristics and their

early-notification counterparts compute in roughly the

same time and produce the results of comparable

quality.

2) The standard flow-based heuristics are too slow for

real-time use for instances greater than 400 nodes

where computation takes more than couple of seconds.

This is mainly because all the grid nodes are junctions

with high degree. We demonstrate in the next sub-

section that in realistic instances we have many more

nodes of smaller degree and thus faster performance.

3) Early-notification heuristics are suitable for real-time

use even for the largest instances of over 1200 nodes.

Their communication delays are a fraction of a second

for all the instances.

C. Scalability Over Realistic Instances

Finally, we investigate scalability of our heuristics over

instances that exhibit a real-world structure. Buildings typi-

cally have backbone corridors, a number of rooms which

correspond to nodes of degree 1 or 2 while multi-story

buildings are connected through staircases which could

cause a congestion during evacuation. We evaluated our

603

Table V
SCALABILITY STUDY COMPARING FLOW-BASED HEURISTICS AND THEIR EARLY-NOTIFICATION VARIANTS.

Grid T Supply F1 F1v F2 F2v F3 F3v t1 t1v t1vd t2 t2v t2vd t3 t3v t3vd

5 124 306 236 220 238 221 244 229 0.01 0.01 0.0 0.01 0.0 0.0 0.0 0.0 0.0
10 275 1456 1144 1106 1177 1108 1196 1153 0.07 0.05 0.0 0.05 0.05 0.0 0.05 0.04 0.0
15 428 3099 2458 2413 2518 2422 2478 2448 0.51 0.3 0.01 0.38 0.31 0.01 0.44 0.4 0.01
20 584 5691 3595 3675 3698 3687 3805 3714 3.65 2.18 0.04 2.71 2.15 0.04 3.3 3.1 0.02
25 732 8597 5481 5550 5540 5572 5634 5513 12.86 8.35 0.09 9.86 8.11 0.1 12.03 11.27 0.04
30 860 12424 5695 5664 5728 5608 5912 5840 52.25 42.18 0.22 44.0 40.19 0.21 46.9 46.44 0.1
35 957 16828 8009 7898 8006 7968 8047 8019 111.13 98.13 0.38 92.35 92.45 0.35 102.7 100.17 0.15

heuristics over one such instance, a graph that models a hotel

with 6 floors, each floor consisting of two parallel corridors

with 30 rooms each. Each room has a maximal capacity of

5 people. Corridors are connected through a western and

eastern staircase which lead to the ground level connected

to three exists.

We discovered that while the exact approach is still taking

unacceptably long times to compute (more than 30 minutes),

our heuristics run significantly faster, probably due to a

larger number of lower-degree nodes. The total number

of nodes in the corresponding dynamic network was more

than 1000 and yet our heuristics executed in less than 0.5

seconds. In comparison, our heuristics take on average more

than 40 seconds to compute over a comparable random

grid instance of 900 nodes (grid dimension 30 in Table

V). Furthermore, a multi-story hotel instance with 16 floors

induces dynamic network of 2892 nodes and is solved in

7.5 seconds by our heuristics while early-notification version

introduces communication delays of less than 0.2 seconds.

We can therefore conclude that the random instances used in

our experiments are significantly more challenging than the

real-world instances, and we could expect our algorithms to

scale up to real-world structures with thousands of nodes.

ACKNOWLEDGMENT

This research was funded by the Higher Education Au-

thority PRTLI-IV Scheme as part of the NEMBES project.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we considered the problem of planning

evacuation routes in deteriorating networks, where nodes

become unavailable over time, due to the spread of a

hazard. We developed a family of flow-based evacuation

heuristics and compared its performance against a number

of alternative approaches: the exact approach based on

maximising flow over a time-expanded graph, congestion

oblivious approaches and the hazard-aware adaptation of the

related flow-based CCRP heuristic. In empirical evaluation

we demonstrated that the exact approach does not scale

while the congestion-oblivious and CCRP approach pro-

duce solutions of inferior quality. Our flow-based heuristics

produce high-quality plans in small amounts of time. In

particular, the early-notification variant of our heuristics is

able to compute relevant portions of the evacuation plan in a

real-time manner even for large instances with thousands of

nodes. To the best of our knowledge the set of heuristics we

present constitutes the state-of-the-art approach for the real-

time evacuation planning. In future we plan to integrate our

flow-based heuristics into a pedestrian-movement simulator

to evaluate the performance of our algorithms in more

realistic settings.

REFERENCES

[1] L. R. Ford and D. R. Fulkerson, “Constructing maximal
dynamic flows from static flows,” Operations Research, vol. 6,
no. 3, pp. 419–433, May-June 1958.

[2] B. Kotnyek, “An annotated overview of dynamic network
flows,” INRIA, Tech. Rep. RR-4936, 09 2003.

[3] H. Hamacher and S. Tjandra, “Mathematical Modelling of
Evacuation Problems: A State of Art,” Fraunhofer ITWM,
Tech. Rep. 24, 2001.

[4] Q. Lu, B. George, and S. Shekhar, “Capacity constrained
routing algorithms for evacuation planning: A summary of
results,” in Advances in Spatial and Temporal Databases, ser.
Lecture Notes in Computer Science, C. Bauzer Medeiros,
M. Egenhofer, and E. Bertino, Eds. Springer Berlin /
Heidelberg, 2005, vol. 3633, pp. 291–307.

[5] B. Hoppe and E. Tardos, “The quickest transshipment prob-
lem,” in Proceedings of the sixth annual ACM-SIAM sympo-
sium on Discrete algorithms, ser. SODA ’95. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 1995,
pp. 512–521.

[6] B. Hoppe and O. Tardos, “The quickest trans-
shipment problem,” Math. Oper. Res., vol. 25,
pp. 36–62, February 2000. [Online]. Available:
http://portal.acm.org/citation.cfm?id=351180.351185

[7] H. W. Hamacher and S. Tufekci, “On the use of lexicographic
min cost flows in evacuation modeling,” Naval Research Lo-
gistics, vol. 34, no. 4, pp. 487–503, August 1987.

[8] M. Barnes, H. Leather, and D. K. Arvind, “Emergency evac-
uation using wireless sensor networks,” in Proceedings of
the 32nd IEEE Conference on Local Computer Networks.
Washington, DC, USA: IEEE Computer Society, 2007, pp.
851–857.

[9] J. Edmonds and R. M. Karp, “Theoretical improvements
in algorithmic efficiency for network flow problems,” J.
ACM, vol. 19, pp. 248–264, April 1972. [Online]. Available:
http://doi.acm.org/10.1145/321694.321699

604

