
1

HTTP acceleration over high latency links

Paul Davern, Noor Nashid, Ahmed Zahran, Cormac J Sreenan
Mobile and Internet Systems Laboratory,

Department of Computer Science
University College Cork

Cork, Ireland
p.davern@cs.ucc.ie

Abstract—Broadband satellites enable Internet access for
remote communities and niche markets such as ships and
airplanes. However, their inherent characteristics, suchas
long delays and limited resources, significantly degrade the
user quality-of-experience. In this paper, we propose a novel
HTTP Performance Enhancing Proxy (PEP) that accelerates
web-browsing and improves the utilization of satellite re-
sources. We describe TCP and HTTP optimizations, which
enable this acceleration. Our performance evaluation shows
an average reduction in Web page-load latency of up to
27%.

Index Terms—HTTP acceleration, HTTP Performance En-
hancing Proxy, High latency, Satellite.

I. Introduction

The use of IP satellite networks is gaining an increasing
momentum due to their ability to deliver communication
services to difficult to reach regions or to nation-wide
areas. Figure 1 shows a general architecture for such a
satellite system including

• Satellite gateways (SGs), which are traffic aggre-
gators sitting at the edge of network and usually
serving more than one user, e.g. residents of a
specific remote community. A remote and ground
gateway are shown, the remote gateway acts as an
aggregation point for remote community traffic and
the ground gateway provides an aggregation point
for services hosted in the core network.

• Satellite, whose main role is to forward the traffic
across attached satellite terminals, i.e. gateways.

• Network Control Center (NCC) is a logical en-
tity that controls the satellite network. NCC per-
forms different functions including synchronizing
terminals, resource management, alarm manage-
ment, security management, performance manage-
ment, billing and accounting.

Figure 1. Satellite System

In this architecture, SGs usually represent a bottleneck,
where for example web browsing at a client machine,
suffers from long page load time due to the long RTT
(~600ms for Geostationary Satellites) and the limited
bandwidth of the link [1]. In such an Internet access
system, techniques such as cache proxies [2], pre-fetching
of Hypertext Transfer protocol (HTTP) content, and per-
sistent TCP connections are used to improve the end-
user’s web browsing experience. HTTP PEPs [3], can
employ all three of these techniques to accelerate HTTP
over satellite.

In this paper, we present an HTTP PEP (HTTPEP),
which improves the user’s web browsing experience over
a high-latency link. HTTPEP has a HTTP split proxy
architecture between the ground and the remote sites.
A novel bundling mechanism is used to transfer web
content between the split nodes. Overall, HTTPEP gives
an average of 27% reduction in Web page load latency.

The rest of the paper is organized as follows. Section II
is dedicated to background and related work. In Section



2
III, we present the system components and operating
mechanisms. Section IV shows our system performance
evaluation. Finally, conclusions and future works are
presented in section V.

II. Background and Related Work

The Hypertext Transfer protocol (HTTP) is a stateless,
transactional protocol that governs content exchange be-
tween web clients and servers. HTTP features a sequential
operation that delays the retrieval time of embedded web
resources1. For example, when a client on the end-user’s
machine issues an HTTP GET request for a particular
web page, the web server replies with thebase HTML
page containing references for othernested resources
required by the client to display the page to the end-user.
These resources are requested through additional HTTP
GET requests over possibly new TCP connections opened
by the client to the web server.

Web browsers do not typically aggregate their GETs but
request the required resources one at a time. However,
a browser may pipeline its GET requests. In this case,
multiple requests can be sent before any responses are
received. Pipelining reduces load on the network as
several GET requests can be combined into one TCP
packet. But not all web servers or HTTP proxies support
it. For this reason, most of the major browsers have
pipelining disabled by default [4].

There are several approaches specified to retrieve an
aggregated set of resources, commonly known asbundles,
from a web server. These approaches can be generally
classified as client-side and server-side solutions. MGET
[5], GETALL [6], and GETLIST [7] methods are client-
side solutions that aggregate a number of requests into a
single message. Server-side solutions include [8] in which
the server decides when and how to construct bundles of
frequently accessed resources. As clients cannot control
the resources that are contained in a bundle, so clients
must decide whether to request the bundles or resources
individually. Similar philosophy has been adopted in
the Web++ [9] framework which is designed to deliver
an HTML document and its nested resources in one
transaction.

There are several Transmission Control Protocol (TCP)
issues, which contribute to web page load latency over
satellite links [10]. For example there are issues related
to the connection setup and slow start. It is well known
that TCP employs a three-way handshake (SYN-SYN-

1In this context, a web resource refers to for example an icon,an
image, a CSS page, or other similar content.

Figure 2. System Components

ACK) to establish TCP connections and to tear them
down. The process of opening such connections over a
high latency link introduces a long delay into web page
loading time[11].

When a TCP connection is first opened, the TCP sender
enters the slow start phase. In this phase TCP builds up
its congestion window as it transmits data. TCP takes a
long time to exit this phase when it is operating over a
high latency link and during this period the link will be
underutilized [12]. Once TCP exits the slow start phase
it is able to utilize the bandwidth more efficiently.

Different mechanisms [12], [13], [14], [15], [16] are pro-
posed to improve TCP performance in satellite systems.
One particular mechanism is the use of TCP performance
enhancing proxies (PEPs) [17]. TCP PEPs adopt differ-
ent techniques to enhance TCP performance over high
latency links including ACK spacing, local ACK, local
transmission, header compression, payload compression
and priority-based multiplexing. However, breaking the
end-to-end semantics in PEPs has different implications
including security and reliability. Typically, using PEPs
conflicts with the need for network level security or
application end-to-end acknowledgment. Future work will
address such issues.

HTTPEP mitigates the effects of HTTP/TCP operation
on web page load delay over high latency links through a
bundling mechanism over a split architecture as described
in the following section.

III. System Operation

Figure 2 presents the system components of HTTPEP.
HTTPEP has a “split HTTP proxy” architecture by which
the functionality is distributed between two HTTP proxy
nodes implemented at both ends of the satellite link. The



3
remote proxy (ROptProxy) appears as an HTTP proxy to
the end user web browser at the remote site. The ground
proxy (GOptProxy) acts as a typical web client to web
servers. The two proxies split the HTTP protocol at the
remote side proxy, re-issues it at the ground proxy and
reconstructs it again at the remote proxy. The two proxies
communicate the web content using our novel bundling
mechanism.

At startup, ROptProxy and GOptProxy establish a fixed
number TCP connections between them. This is only
done during the setup phase. These pipes are maintained
throughout the system operation and are used for all
communication between the proxies.

In order to serve an HTTP web page request, the system
operates as follows:

1) When a new web page is required at a client, an
initial GET request is sent by the browser for this
page (termed the base page).

2) ROptProxy intercepts this GET request and for-
wards the URL to GOptProxy over one of the fixed
TCP connections.

3) GOptProxy fetches the base page associated with
the URL from the web server and passes it to a
Scheduler/Compression Engine. The base HTML is
scheduled for transmission to the remote site over
the persistent connections.

4) GOptProxy parses the Base HTML and retrieves
the associated web resources that are embedded in
that page.

5) These resources are stored temporally at the ground
site. They are then compressed and scheduled for
transfer to the remote site. The associated HTTP
headers for these resources are also compressed.
Session information such as cookies are preserved
in this process.

6) When the base HTML is received at the remote
side, ROptProxy parses it to determine which re-
sources will be on the way from the ground. Then
it passes the base HTML to the client.

7) When the client makes subsequent requests for the
associated resources of the base HTML, ROptProxy
determines if the resources are on the way from the
ground side. If so, the request from the client is
delayed until the resource arrives. Otherwise, this
request is considered to be a new base page request
and the system executes the steps outlined above.

Resources are streamed into multiple TCP persistent
connections from the ground to the remote sides. When
scheduler needs to transfer a resource it chooses the

next free TCP connection in a round-robin fashion. Thus
the resources will be transmitted to the remote site in
parallel. The resources could also be multiplexed into
one TCP connection or transferred over other transport
layer protocols such as SCTP[18]. If the client is not
waiting for a particular resource then ROptProxy stores
it temporarily at the remote site and it is returned to the
client when it is required.

The HTTPEP split architecture optimizes the web page
retrieval in several different ways:

• The expensive three-way handshake over the satellite
link is eliminated as the TCP connections to the web
server are made at the ground site.

• The initial GET for a particular base HTML causes
a bundle of GET requests for its nested resources
to be issued at the ground site. The associated
resources are then transferred from the ground to the
remote site. The subsequent GET requests for nested
resources within the base HTML by the client do not
cross the high latency link but are served locally.
This mechanism overcomes the sequential operation
of HTTP.

• The persistent connections from the ground to the
remote sites allow TCP to build up its congestion
window and so the effects of the slow start could
be mitigated. In the presence of a TCP PEP there
would not be such an issue with the TCP slow start.

• The compression assists in reducing the amount of
traffic crossing the satellite link.

These improvements are reflected in the next section.

IV. Performance Evaluation

The evaluation took place on a test bed consisting of
two PCs with Intel Core 2 Duo CPU E4700 2.60 GHz,
running Fedora 10, one running ROptProxy and the other
running GOptProxy. The ground and remote nodes, are
connected using a direct 1Gbps Ethernet connection over
which the satellite link behavior is emulated usingtc
commands in Linux. That is, the data rate is limited to
256Kbps and a 300ms one way delay is introduced in
each direction. Several PCs are connected to the remote
node each running a web browser.

In our performance evaluation, we consider different
performance metrics including:

• Traffic volume crossing the link determined by gath-
ering statistics on the interfaces connected to the
emulated satellite link on both ends using tcpdump



4
traces. The most relevant statistics include informa-
tion about sent data (bytes and packets). The statis-
tics are obtained using capinfos, a terminal-based
tool that is part of Wireshark. Note that tcpdump is
used for the sake of automating the testing and result
generation.

• HTTP signaling load represented by the number of
GET request crossing the emulated satellite link. The
number of GET requests is a function of the number
of resources per page.

• End-to-end delay performance measured as the delay
from the instance of sending the first GET request
to the time at which the entire page, including all
embedded resources, is received. The page load time
is measured using FireFox’s XPCOM [19], a cross
platform component object model which can be
controlled using JavaScript.

The testbed clients are PCs running FireFox, which is
controlled through the XPCOM. At the beginning of each
experiment the FireFox cache is cleared.

The testing process is driven by a C program that reads a
list of URLs from a file. The program drives FireFox to
navigate through this set of URLs automatically. For the
results that are shown, the URLs point to a set of pages
that contain the same text and a number of embedded
images from Caltech 101 image dataset [20]. The number
of images in the set of pages varies from 1 to 30. The
images are all JPEGs and have an average size of 10K.
These pages are served from a web-server co-located in
the ground node. In the results, each point corresponds
to the average of 10 runs; i.e., each page is browsed ten
times and the performance metrics is the average of these
ten experiments to reduce the impact of random timing
behaviour of network and server access.

Figure 3 plots the traffic crossing the satellite link in
bytes versus the number of embedded resources for
different operating modes including normal operation (i.e.
a direct connection between the browser and the web-
server without an intermediate proxy), HTTPEP without
compression (HTTPEP)2, HTTPEP with compression of
resources (HTTPEPC).

The figure shows a marginal saving in terms of number
of bytes crossing the bent pipe for the HTTPEP solution
in comparison to normal operational mode. This byte
reduction is due to several factors. First the elimination of
TCP signaling for connection establishment and release.
Second the compression of the HTTP headers. Third, the
reduction in application layer signaling in that embedded

2The HTTPEP results include HTTP header compression

Figure 3. Traffic crossing the link in bytes

resources are not explicitly requested by the remote site
but are automatically transmitted.

Typically, the number of GET requests is function of
the number of resources per page. Assuming a page
has n resources, then the number of GET requests is
(n+1), in which the “1” corresponds to the initial GET
request. HTTPEP eliminates this application layer signal-
ing. However, the solution obtains the base HTML page
through an explicit URL request passed from ROptProxy
to GOptProxy.

Additional significant savings in bandwidth usage is
attained by compressing the resources before they are
transferred to the remote site. For the results shown here
the compression quality factor of the JPEG images is
reduced to 50 using the GraphicsMagick [21] library. Our
investigation has shown that improvements are propor-
tional to the size of the embedded resources.

Figure 4 plots the page load delay as measured at the
client machine versus the number of embedded resources
per page. The figure shows an average page load delay
reduction is 27% using compression in comparison to an
average saving of 10% without compression.

The page load delay saving of 10% is due to two factors.
First the elimination of the latency in TCP signaling for
connection establishment. Second, by using the bundling
mechanism the resources are made available at the remote
site more quickly than with the browser alone.

Figure 5 plots the page load time for the HTTPEP
and normal operation versus the satellite link capacity.
Each point in the figure is an average over all the test
pages. The figure shows a significant improvement of
the HTTPEP solution over the browser alone as the
satellite link capacity increases. When the bandwidth



5

Figure 4. Average page load delay

Figure 5. Effect of varing the satellite link capacity

is constrained to 256Kbps the average improvement of
HTTPEP over the browser alone is 10%, whereas, when
the bandwidth is set to 500Kbps there is an average
improvement of 27%. The average improvement levels
out at 32% when the link capacity reaches 2Mbps.

V. Conclusions and Future Work

A novel HTTP PEP (HTTPEP) is introduced in this paper.
The performance evaluation shows that several gains can
be attained by deploying HTTPEP in a satellite based
Internet access system. There is a reduction in the amount
of traffic crossing the satellite link and a significant
reduction in the page load time up to 27% on average
under the aforementioned operating scenario i.e. using a
link constrained to 256 Kbps with an RTT of 600ms. We
are looking to integrate new caching techniques into the
split architecture to further improve the web browsing
experience in satellite systems.

Acknowledgments: This work is supported by Enterprise
Ireland Grant Number IP/2009/0026 and by Altobridge.

References

[1] C. Caini, R. Firrincieli, M. Marchese, T. de Cola, M. Luglio,
C. Roseti, N. Celandroni, and F. Potortì, “Transport layer protocols
and architectures for satellite networks,”International Journal of
Satellite Communications and Networking, vol. 25, pp. 1–26, Jan.–
Feb. 2007.

[2] “Squid,” 2010. Retrieved Sept 16, 2011, from http://www.squid-
cache.org.

[3] “Mguard.” Retrieved September 16, 2010, from
http://www.broadband-internet-access.com/.

[4] “What is http pipelining.” Retrieved October 9, 2010, from
http://www.mozilla.org/projects/netlib/http/pipelining-faq.html.

[5] J. Franks. Retrieved September 29, 2010, from
http://ftp.ics.uci.edu/pub/ietf/http/hypermail/1994q4/0260.html.

[6] V. N. Padmanabhan and J. C. Mogul, “Improving http latency,”
Comput. Netw. ISDN Syst., vol. 28, no. 1-2, pp. 25–35, 1995.

[7] V. N. Padmanabhan, “Addressing the challenges of web data
transport, ph.d thesis, university of california at berkeley,” 1998.

[8] C. E. Wills, M. Mikhailov, and H. Shang, “N for the price of1:
bundling web objects for more efficient content delivery,” in WWW
’01: Proceedings of the 10th international conference on World
Wide Web, (New York, NY, USA), pp. 257–265, ACM, 2001.

[9] B. S. (sun Bin, “Speeding up the web using the web++ frame-
work,” In Proceedings of WebNet, 2001.

[10] S. Kota and M. Marchese, “Quality of service for satellite IP
networks: a survey,”International Journal of Satellite Commu-
nications and Networking, vol. 21, pp. 303–349, 2003.

[11] M. Allman, C. Hayes, H. Kruse, and S. Osterman, “Tcp perfor-
mance over satellite links,” in5th International Conference on
Telecommunication Systems, 1997.

[12] M. Allman, D. Glover, and L. Sanchez, “RFC2488: Enhancing
TCP Over Satellite Channels using Standard Mechanisms,” 1999.

[13] D. Adami, M. Marchese, and L. Ronga, “TCP/IP-based multime-
dia applications and services over satellite links: experience from
an ASI/CNIT project,” IEEE Personal Commun., vol. 8, no. 3,
pp. 20–27, 2001.

[14] W. K. Chai, M. Karaliopoulos, and G. Pavlou, “Providing
Relative Service Differentiation to TCP Flows over Split-TCP
Geostationary Bandwidth on Demand Satellite Networks,” in
WWIC ’07: Proceedings of the 5th international conference on
Wired/Wireless Internet Communications, (Berlin, Heidelberg),
pp. 17–29, Springer-Verlag, 2007.

[15] P. C. G. Giambene, D. Bartolini, M. Luglio, and C. Roseti,
“Dynamic resource allocation based on a TCP-MAC cross-layer
approach for DVB-RCS satellite networks,”International Journal
of Satellite Communications and Networking, vol. 24, no. 5,
pp. 367–385, 2006.

[16] C. Caini, R. Firrincieli, and D. Lacamera, “Comparative per-
formance evaluation of tcp variants on satellite environments,”
Communications, 2009. ICC ’09. IEEE International Conference
on, pp. 1 –5, jun. 2009.

[17] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby,
“Rfc3135: Performance enhancing proxies intended to mitigate
link-related degradations,” 2001.

[18] P. Natarajan, P. D. Amer, and R. Stewart, “Multistreamed web
transport for developing regions,”NSDR ’08: Proceedings of the
second ACM SIGCOMM workshop on Networked systems for
developing regions, pp. 43–48, 2008.

[19] Mozilla, “Xpcom.” Retrieved: October 3, 2010,
https://developer.mozilla.org/en/XPCOM.

[20] C. C. V. Group, “Images,” 2010. Retrieved: September 16, 2010,
from http://www.vision.caltech.edu/html-files/archive.html.

[21] GraphicsMagick, “Graphicsmagick image processing system.” Re-
trieved: October 3, 2010, http://www.graphicsmagick.org/.


