
A Real-time Architecture for Automated Wireless Sensor and Actuator Networks

Yuanyuan Zeng
Department of Computer Science,

University College Cork,
Cork, Ireland
yz2@cs.ucc.ie

Cormac. J. Sreenan
Department of Computer Science

University College Cork,
Cork, Ireland
cjs@cs.ucc.ie

Guilin Zheng
School of Power and Mechanical

Engineering,
Wuhan University,

Wuhan, China
glzheng@whu.edu.cn

Abstract—Wireless sensor and actuator network (WSAN)
are composed of a large number of heterogeneous sensors and
actuators. In the automated WSAN, sensors are collaborated to
monitor the physical phenomenon in the surveillance field,
while the actuators are to collect sensing data, process the data
and perform appropriate actions without the existence of
central controller. Most WSANs are used in the real-time
sensing and reaction systems towards physical environment. In
this paper, we propose a real-time architecture for automated
WSAN to bind the latency in applications. In the architecture,
we present distributed mechanisms for sensor-actuator event
reporting and self-aware coordination to maintain the delay
bound sensor-actuator communication. And then we present
mechanism for ordered multi-event task assignment, and the
acting coordination mechanism to provide efficient reaction
and execution of the event task in time. Preliminary simulation
results are presented to demonstrate the advantages of our
solutions.

Keywords-real-time; Wireless sensor and actuator Networks;
communication; coordination; automated architecture

I. INTRODUCTION
A wireless sensor and actuator network is a group of

sensors and actuators that are geographically distributed and
interconnected by wireless networks. Sensors gather
information about the state of the physical world, and the
actuators react to the information by performing appropriate
actions. WSANs are widely used in applications such as
home automation, environmental monitoring, microclimate
control, fire handling system, and battlefield surveillance,
etc. In automated WSANs, sensor-actuator and actuator-
actuator communication and coordination may occur
autonomously during data collection and the process of
performing changes when detecting events. In many
situations, sensors are usually low-cost, low-power and small
devices equipped with limited sensing, data processing and
wireless communication capabilities, while actuators
typically have stronger computation and communication
powers and more energy budget that allows longer battery
life, and they could be mobile. Regardless, resource
constraints apply to both of them. Depending on the
application there may be a need to make a repaid respond
towards the physical world, such as in fire handling systems,
and other environment monitoring and handling systems etc.

Therefore, the issue of real-time communication is very
important in WSANs. Considering the design constraints of
limited power, network dynamics, heterogeneity and
scalability, protocols and algorithms proposed for WSNs
may not well-suited for the unique features and application
requirements of WSANs.

Our goal in this paper is to propose a real-time architecture
which provides timely reporting, reaction and execution to
the environments upon the detection of an event,
autonomously. The remaining of this paper is organized as
follows. Section 2 presents the related work. In section 3,
we outline the network module and architecture. We present
sensor-actuator event reporting and self-aware coordination
in section 4. And in section 5, we present the actuator-
actuator coordination mechanisms. The simulation is
described in section 6. Finally, section 7 concludes this
paper.

II. RELATED WORK
Real-time communication problems in WSNs are not

new. He et al [1] proposed an outstanding real-time
communication protocol binding the end-to-end
communication delay by enforcing a uniform delivery
velocity. Felemban et al proposed [2] a novel packet
delivery mechanism called MMSPEED for probabilistic
QoS guarantee. Chipara et al proposed [3] a real-time power
aware routing protocol by dynamically adapting
transmission power and routing decisions. Although a
number of protocols are proposed for WSN, they may not
work well when applying directly to WSAN [4, 5].
Stankovic et al [6] highlighted the state of the art and
present many open research questions that must be solved.
Shah et al [7] proposed a real-time coordination and routing
framework that addresses the coordination of sensors and
actuators and respects the delay bound for routing in a
distributed manner. Durresi et al [8] presented a geometric
broadcast protocol for WSAN. Hu et al [9] developed an
anycast communication paradigm that can reduce both end-
to-end latency and energy consumption. Boukerche et al
[10] proposed a routing protocol with service differentiation
for WSANs, which provides low latency and reliable
delivery in the presence of failures. Melodia et al [11]
presented the first distributed coordination framework for
wireless sensor and actuator network to made tradeoff

2009 Fifth International Conference on Wireless and Mobile Communications

978-0-7695-3750-4/09 $26.00 © 2009 IEEE

DOI 10.1109/ICWMC.2009.8

1

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on January 28, 2010 at 09:37 from IEEE Xplore. Restrictions apply.

between energy consumption and delay for data
transmission; and discussed the sensor-actuator and
actuator-actuator coordination problems. But the authors
only focused on scenarios with immobile actuators that can
act on a limited area defined by their action range. Nagi et al
[12] designed a real-time communication framework that
supports event detection, reporting, and actuator
coordination.

Different from previous work, we aim to present a real-
time architecture from the application aspect, and to bind
the application time by several sub deadlines in each phase
of the applications. Few of the relevant work considers the
energy efficiency and reliability of the actuators when in
coordination, which is also resource limited; as well as
effective self-aware sensor-actuator and actuator-actuator
coordination by using the actuator mobility.

III. AUTOMATED NETWORK ARCHITECTURE
Each sensor and actuator has a unique id number, and

knows its own location, which can be obtained at a low cost
from Global Positioning System or location discovery
algorithms. Each sensor and actuator can know its
neighbors’ information by periodic message exchange. Each
actuator knows its residual energy. We assume the network
is synchronized by means of one of the existing
synchronization protocols. The actuators are equipped with
two radio transmitters, i.e., a low data rate transmitter to
communicate with sensors, and a high rate wireless interface
for actuator-actuator communication.

We adopt the deadline partition to divide the application
deadline into multiple sub deadlines in different phases. As
long as the individual sub deadlines are met, we can
guarantee the delay of the whole application process. We
define the application delay as bound D that is the
maximum allowed time between the instant when the
physical features of the event area sampled by the sensors
till the actuators finish the destined event in the area to make
a change. We try to generally divide application-specific
bound D into several sub-deadlines: D1 is the delay bound
for end-to-end event reporting from sensor to actuator; and
D2 is the delay bound for self-aware sensor-actuator
coordination. And then D3 in the delay bound for actuator
negotiation to make task assignment. D4 is the delay bound
for actuator-actuator coordination process to make reaction
and finish the event. The bound D, D1, D2, D3, D4 are all
parameters dependent on the application requirements.

IV. SENSOR-ACTUATOR COORDINATION

A. Sensor-Actuator Event Reporting
The designed event reporting algorithm could be

combined with the existing routing algorithms in sensor-
actuator communication. Each actuator takes responsibility
of collecting data from local sensors by dividing the

surveillance field into clusters, i.e., in each cluster, the
actuator acts as a cluster head and local sensors act as
cluster members. Each actuator ak is assigned with a weight
function according to a specific local sensor as weight(si,
ak), which decided by the distance between si and ak, i.e.,
dis(si, ak), and the residual energy of ak, i.e. E(ak), as well as
the load of ak, i.e., load(ak). The load can be calculated by
the packets received within a certain recent interval. Each
actuator periodically beacons its position, residual energy
and load among its neighborhood. The higher weight of an
actuator represents that it incurs less delay, better energy
efficiency and more reliability. So the weight function is
defined as:

)1(
)(*),(

)(
),(

kki

k
ki

aloadasdis

aE
asweight =

So we could use weight function of actuators as a metric to
make field partition to form each cluster cluster(ak)
associated with the actuator ak. If there is a tie, the actuator
with lower id wins, where: cluster(ak)={for any sensor si∈
cluster(ak)|weight(si, ak)≤weight(si, ak’), OR weight(si,
ak)=weight(si, ak’), id(ak)< id(ak’)} Initially, all actuators are
with the same energy level and load (i.e., zero load), so the
field partition is a Voronoi graph as shown in figure1.

Figure 1. Initialized network clustering based on Voronoi graph

To bind the end-to-end delay in event reporting, the
sensor adds a slack1 filed recording the time left in the
current phase to its data packet that is set to D1 by the
source sensors. The slack1 filed will be updated in sensor-
actuator communication hop by hop. We use Δ(e) to
represent the delay on the outgoing link e in routing from
sensor to actuator. We could estimate the Δ(e) as:
Δ(e)=(delaytran+delaycont)*R, where delaytran is a constant
determined by packet size and network bandwidth, and
delaycont is contention time, and then R is transmission count.
A source sensor si starts the event reporting algorithm by
sending out a DetectEvt(sensor_id, hop_num, slack1, ev_id,
actuator_id) message, in which the actuator_id is the id of
the actuator chosen by the initialized Voronoi graph. Then
the DetectEvt message is forwarded out by existing routing
protocol, such as GPSR. During the forwarding, if the slack
time is enough, i.e., slack1>=Δ(e), then the packet is
forwarded to the next hop. When in packet forwarding
process, if the relaying sensor finds another actuator with
higher weight, then the packets will be routed towards the

2

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on January 28, 2010 at 09:37 from IEEE Xplore. Restrictions apply.

better actuator. When the destination actuator receives the
data packets, it will reply a ReplyEvt message backwards.
Otherwise, the packet will be expired, and then a ReplyEvt
is notified backwards, and a FindActuator message will be
broadcasted out by the current sensor to invoke the self-
aware sensor-actuator coordination (in section 4.2).

B. Self-Aware Sensor-Actuator Coordination
When a sensor firstly sends out a FindActuator message,

the self-aware sensor-actuator coordination is invoked to
find an alternative actuator nearby to move and make data
collection within the bound D2. We call the sensor as
sensor-actuator coordination invoker. To provide delay-
bound coordination, we add slack2 into FindActuator
message body to record the time left for coordination. The
slack2 will be updated by local timestamp and encapsulated
into message during the FindActuator message forwarded
hop by hop. When a sensor with a reporting actuator nearby
receives a FindActuator message, it will calculate to make
decision and notify the actuator nearby to move and make
data collection, if the time left is enough. And then a
GetActuator message will be sent out backwards by the
sensor. Otherwise, if a nearby actuator receives the
FindActuator message and the time left is enough to move
to the invoker position, and then a GetActuator message will
be forwarded backwards. The moving velocity will be
dependent on the distance to specific collecting position and
time left for coordination recorded in slack2.

V. ACTUATOR-ACTUATOR COORDINATION

A. Event Task Assignment
When an actuator gets the last data packet of an event

from local sensors, it broadcasts out a Negotiate(actuator_id,
Event_id, Event_priority) message, and we call this actuator
as negotiation invoker. The Event_id is the id of the event
that the actuator collects; and the Event_priority is an
application-specific identity used to discern the urgent
degree of each event, such as “very high”, “high”,
“medium”, “low”, and “very low”. The event priority is
predefined according to the application requirements. The
node that receives a Negotiate message will reply an
ActReply(actuator_id, energy, location, Event_id,
Event_priority) message with its own id, event id and
priority. The negotiation is executed in the local area of the
actuator invoking the process. Multiple sensors placed in the
monitoring field could be used to detect the same event, so
one or multiple actuators will get the sensing data of the
exact event. Through the process of backward ActReply
message, the data of the same event (with the same Event_id)
will be aggregated during the backward process and
forwarded back to the first actuator that invokes the
negotiation. If there is more than one event sensed by an
actuator, then after the data aggregation for the same event,
a multi-event ordered task assignment should be involved.

The task assignment on this aggregation actuator will be
executed according to the event priority, i.e., the event with
higher Event_priority rank will win. If there is a tie of the
event priority, the event with lower Event_id will win.
Beyond the above, the aggregation actuator will get to know
the whole area and location of the detected event through
multi-actuator communication. The event area could be
represented by using the left upside coordinate (Ev_Xi,
Ev_Yi) and the right downside coordinates (Ev_Xj, Ev_Yj)
approximately. During negotiation, we could combine each
sub event area gathered by each actuator into the whole
event area.

B. Action Mechanism
We assume all actuators have the same type of

communication and acting hardware, i.e., they have the
same maximum acting range ActRa. Let G= {g1, g2,…, gm}
be the set of all event grids in surveillance field. Let gi be
the location vector for an event grid gi. Let di,k be the
distance between gi and the actuator ak. di,k =|| gi - ak||. We
use an acting capability metric to express the acting
coverage over the event area in the surveillance field. The
actuator only can act on the event within its acting range,
and it has better acting capability to the closer event. Let
p(gi, ak) describe the acting capability of the actuator toward
the event occurs at gi. p(gi, ak) can be illustrated as follows:

, ,

,

(,)
(,)

0
i ak ak i ak ak

i k
i k ak

f d E d ActR
p g a

d ActR
≤⎧⎪= ⎨ >⎪⎩ (2)

The acting capability of the actuator will depend on its
distance toward the event and also its residual energy level.
We could use the following function to represent the
capability of the actuators in performing actions towards the
physical world.

ak

aki
akaki

E
d

Edf
,

,

1

1),(
+

=
 (3)

Then the acting capability of the actuator set AS in specific
gi is represented as follows:

(,) 1 (1 (,))
k

i i k
a AS

p g AS p g a
∈

= − −∏
 (4)

Let Ev_Area be the specific event area. The acting
capability of local actuator node set AS toward the event
area Ev_Area is defined as the summation of the acting
coverage over the target of Ev_Area from (Ev_Xmin, Ev_Ymin)
to (Ev_Xmax, Ev_Ymax).

,0 0
(_ ,) ()

x y

ip Ev Area AS p g AS dxdy= ∫ ∫ (5)
For the acting coverage requirement in surveillance field,

an application-related threshold pth is given to determine the
requirement of acting capability degree for an application.
AS’ is subset of AS (i.e., the set of local actuators that
perform the task), so the nodes in AS’ perform the acing task

3

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on January 28, 2010 at 09:37 from IEEE Xplore. Restrictions apply.

of event area with the acting capability should be no less
than application desired pth. So:

 (_ , ') thp Ev Area AS p≥ (6)
To make tradeoff between reliability and energy

efficiency, we propose the concept of acting redundancy.
For the actuator set AS that the acting range of actuators in
AS can cover the whole event area, each actuator ak when
p(Ev_Area, ak)>0, will decide whether to attend the event
execution by calculation of acting redundancy ξ,k as follows:

(_ , \{ })
(_ ,)

k
k

k

p Ev Area AS a
p Ev Area a

ξ =
 (7)

When ξk ≥1, it implies that the actuator ak has no
contribution to perform action at the specific event area. So
this actuator will not attend the task execution for the event.
Considering the reliability in the event reaction, we could
invoke an application-specific ξth to make the existence of
acting redundancy for an application.

The actuator will decide whether to attend task execution
by the edibility rule as follows:

)8()(_
'

ppANDfalse

ture
astateACTING

thASthk

thk
k

⎩
⎨
⎧

>≥
<

=
ξξ
ξξ

Otherwise, if local actuators cannot provide effective
acting coverage because of distance or energy, then the
negotiation invoker will sign to move the actuators into
event area and select the velocity to perform the task in
time. For n actuator in local AS, we divide the event area
into n sub areas evenly. So each actuator moves into the
centroid of each sub area. The sub-deadline for making
actuator-actuator coordination is D4 recorded by slack4 and
encapsulated in the message. Let tk’ be the time the actuator
ak’ takes to arrive at the sub event area, and r be the rate of
performing appropriate actions by actuators (r is defined by
applications). The moving actuators should satisfy formula
(9), so the moving velocity could be calculated.

AreaEvtBr
n

i
k _)(*

1
'4 =−∑

=

 (9)

The maximal moving velocity is determined by the
application. If the calculated velocity is larger than
maximum, or the moving actuator set could not satisfy
formula (9), the real-time event execution fails.

VI. SIMULATIONS
We report the simulation performance results when

compared with the framework presented in [10]. The
simulations were developed within the OMNET++
Simulator. We simulate the network scenario when 200
sensor nodes are randomly deployed in a square area of
200mX200m. The other simulation parameters are chosen
as: the transmission range of sensors is set to 40m. The
sensing range is set to 20m and the bandwidth to 250kbit/s.
Sensors send 56byte long packets, and the size of the queues
is set to 20 packets. The transmission range of actuator is
sent to 80m, and the acting range of actuator is sent to 100m.

The initial energy of all sensors is 1J, and all actuators with
initial energy 2J. The communication power is set to
50nJ/bit, the moving power is set to 0.001W/m, and the
action power is set to 0.001W/m2. The event area is
rectangle with varying ranging from 10mX10m till
100mX100m in different simulations. The centroid of the
event area is randomly selected such that the event area
completely falls into the terrain. According to our
framework, the application completion bound B is set to 50s,
and then each sub-deadline D1, D2, D3, D4 in sub-phase is
set to 10s, 10s, 10s, and 20s. The Routing is using GPSR
protocol, and the MAC layer is based on CSMA/CA. We
perform terminating simulations that last 200s, average over
different random topologies. The phenomenon is generated
by 5 events at 50s, 100s, and 150s, respectively.

A. Sensor-Actuator event Reporting
The event area is randomly deployed in a square area of

25mX25m in the surveillance field, while the number of
actuators is increased from 4 to 12 in different simulations.
In figure2, the residual energy of actuators of our algorithm
is better than the closest-actuator event reporting. The
improvement of energy efficiency of our algorithm is
slightly higher than the closest-actuator event reporting as
the number of actuators increase. In figure3, the results
show that the packet delivery ratio with varying number of
randomly deployed actuators, which is shown that our
algorithm selecting actuators with less load will help to
improve successful the sensor-actuator data packet delivery.

4 6 8 10 12

1.95

1.96

1.97

1.98

1.99

2.00

A
ve

 re
si

du
al

 e
ne

rg
y

of
 a

ct
ua

to
rs

 (J
)

Number of actuators

 Our event reporting
 Closest-actuator reporting

 Figure2. Average residual energy of actuators with different number
of actuators

4

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on January 28, 2010 at 09:37 from IEEE Xplore. Restrictions apply.

4 6 8 10 12
0.870

0.875

0.880

0.885

0.890

0.895

0.900

0.905

0.910

0.915
Se

ns
or

-a
ct

ua
to

r p
ac

ke
t d

el
iv

er
y

ra
tio

Number of actuators

 Our event reporting
 Closest-actuator event reporting

Figure3. Sensor-actuator packet delivery ratio with different number

of actuators

B. Self-Aware Sensor-Actuator Coordination
We consider a scenario with homogeneous actuators

randomly deployed in the 200mX200m, where event area is
randomly deployed in a square area of 25mX25m. We set
the coordination delay to 1s. Moreover, the maximal
moving velocities of actuator is set to 12 m/s. Figure4
illustrates the deadline miss ratio in the sensor to actuator
communication procedure as the number of actuators
increases from 2 to 12. It is shown that the miss ratio of our
algorithm is much less than the other two algorithms,
because the alternative actuator could move and help to
maintain an effective real-time sensor to actuator
communication by self-aware sensor-actuator coordination
process. The results in figure5 show our sensor-actuator
communication and coordination is slightly better on
residual actuator energy. Because the actuator will move
and consume energy, the advantage of communication with
self-aware sensor-actuator coordination is not obvious when
the actuator number is relatively small. And then as the
actuator number increases enough, our communication
algorithm has better energy efficiency for actuators because
we consider the energy in clustering process by hybrid
clustering.

2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
en

so
r-

A
ct

ua
to

r d
ea

dl
in

e
m

is
s

ra
tio

Number of actuators

 With self-aware coordination
 Ngai's sensor-actuator communication
 Without self-aware coordination

Figure4. Sensor-actuator communication miss ratio with different number

of actuators

2 4 6 8 10 12

1.90

1.91

1.92

1.93

1.94

1.95

1.96

1.97

1.98

A
ve

 re
si

du
al

 e
ne

rg
y

of
 a

ct
ua

to
rs

 (J
)

Number of actuators

 With self-aware sensor-actuator coordination
 Ngai's sensor-actuator communication

Figure5. Average residual energy of actuators with different number of

actuators

C. Actuator -Actuator Communication and Coordination
In Ngai’s framework, the coordination involved actuators

determine which of them will perform the appropriate
actions, and they simply select the actuators located closer
to the event to move to the event area and react with the
same speed (we set the speed to 6m/s in simulations) for
moving and reacting to the event. The simulation results in
figure6 show our paradigm has less miss ratio than Ngai’s
real-time framework, because we consider the effective
acting range and acting capability for each actuator and then
to make coordination decision toward the event area to
provide enough acting coverage in time. Figure7 shows the
residual energy of actuators of our paradigm and Ngai’s
framework as the number of actuators increases. The results
illustrate that our coordination has better energy efficiency
for actuators, because we consider both acting range and
energy level that actuators could provide in the multi-
actuator coordination process.

2 4 6 8 10 12
0.0

0.1

0.2

0.3

0.4

0.5

0.6

D
ea

dl
in

e
m

is
s

ra
tio

Number of actuators

 With our multi-actuator coordination
 Ngai's multi-actuator coordination

 Figure6. Deadline miss ratio with different number of actuators

5

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on January 28, 2010 at 09:37 from IEEE Xplore. Restrictions apply.

2 4 6 8 10 12

1.65

1.70

1.75

1.80

1.85

1.90
Av

e
re

si
du

al
 e

ne
rg

y
of

 a
ct

ua
to

rs
 (J

)

Number of actuators

 With our multi-actuator coordination
 Ngai's multi-actuator coordination

 Figure7. Average residual energy of actuators with different number
of actuators

VII. CONCLUSION S
We present a soft real-time architecture for automated

wireless sensor and actuator networks. We consider the
heterogeneous characteristics and functionalities of sensor
and actuators, and offer a distributed, self-organized and
comprehensive solution for real-time energy-efficient
communication and coordination mechanisms in WSAN. It
provides efficient sensor-actuator event reporting algorithm
considering the delay, energy and load for actuators. Then a
self-aware sensor-actuator coordination requirement
mechanism is presented to find the actuator nearby to move
and collect sensing data in time. The actuator-actuator
negotiation is designed to make ordered task assignment for
multiple events with different priorities. And then the multi-
actuator makes coordination to select actuator and finish the
task in time.

ACKNOWLEDGMENT

The work is supported by the NEMBES project funded
by the Irish Higher Education Authority under the PRTLI-IV
programme.

REFERENCES
[1] T. He, J. Stankovic, C. Lu, and T. Abdelzaher, “SPEED: A real-time

routing protocol for sensor networks,” IEEE ICDCS, May 2003, pp.
46-55.

[2] E. Felemban, C.-G. Lee, E. Ekici, R. Boder, and S. Vural,
“Probabilistic QoS Guarantee in Reliability and Timeliness Domains
in Wireless Sensor Networks,” IEEE InfoCom, May 2005.

[3] O. Chipara, X. H. Zhimin, X. Guoliang, C. Qin, W. Xiaorui, et al,
“Real-time power-aware routing in wireless sensor networks,” 14th
IEEE International Workshop on Quality of Service, June 2006.

[4] X. Feng, “QoS Challenges and Opportunities in Wireless
Sensor/Actuator Networks,” Sensors, 2008, 8(2), pp. 1099-1110.

[5] D. V. Dinh, M. D. Vuong, H. P. Nguyen, H. X. Nguyen, “Wireless
sensor actor networks and routing performance analysis,”
International workshop on Wireless Ad-hoc Networks, May 2005.

[6] J. A. Stankovic, T. Abdelzaher, C. Lu, L. Sha, and J. Hou, “Real-time
Communication and Coordination in Embeded Sensor Networks,”
IEEE, 2003,91(7), pp. 1002-1022.

[7] G. A. Shah, M. Bozyigit, O.B. Akan, B. Baykal, “Real-Time
Coordination and Routing in Wireless Sensor and Actor Networks,”
6th International Conference on next Generation Teletraffic and
Wired/Wireless Advanced networking (NEW2AN), Lecture Notes in
Computer Sciences, 2006, 4003, pp. 365-383.

[8] A. Durresi and V. Paruchuri, “Geometric broadcast protocol for
sensor and actor networks,” International Conference on Advanced
Information Networking and Applications, mar 2005.

[9] W. Hu, N. Bulusu, S. A. Jha, “Communication Paradigm for Hybrid
Sensor/Actuator Networks,” International Journal of Wireless
Information Networks, 2005, 12(1), pp.47-59.

[10] A. Boukerche, R. B. Araujo, L. A. Villas, “Wireless Actor and Sensor
Networks QoS-Aware Routing Protocol for the Emergency
Preparedness Class of Applications,” 31st IEEE Conference on Local
Computer Networks, 2006.

[11] T. Melodia, P. Dario, V. C. Gungor, and I. F. Akyildiz, “A
Distributed Coordination Framework for Wireless Sensor and Actor
Networks,” MobiHoc’05, May 2005.

[12] H. C. E. Ngai, R. M. Lyu, J. Liu, “A Real-time Communication
Framework for Wireless Sensor-Actuator Networks,” IEEE
Aerospace Conference, March 2006.

6

Authorized licensed use limited to: UNIVERSITY COLLEGE CORK. Downloaded on January 28, 2010 at 09:37 from IEEE Xplore. Restrictions apply.

