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Abstract—Wireless sensor and actuator network (WSAN) 
are composed of a large number of heterogeneous sensors and 
actuators. In the automated WSAN, sensors are collaborated to 
monitor the physical phenomenon in the surveillance field, 
while the actuators are to collect sensing data, process the data 
and perform appropriate actions without the existence of 
central controller. Most WSANs are used in the real-time 
sensing and reaction systems towards physical environment. In 
this paper, we propose a real-time architecture for automated 
WSAN to bind the latency in applications. In the architecture, 
we present distributed mechanisms for sensor-actuator event 
reporting and self-aware coordination to maintain the delay 
bound sensor-actuator communication. And then we present 
mechanism for ordered multi-event task assignment, and the 
acting coordination mechanism to provide efficient reaction 
and execution of the event task in time. Preliminary simulation 
results are presented to demonstrate the advantages of our 
solutions. 
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I.  INTRODUCTION 
A wireless sensor and actuator network is a group of 

sensors and actuators that are geographically distributed and 
interconnected by wireless networks. Sensors gather 
information about the state of the physical world, and the 
actuators react to the information by performing appropriate 
actions. WSANs are widely used in applications such as 
home automation, environmental monitoring, microclimate 
control, fire handling system, and battlefield surveillance, 
etc. In automated WSANs, sensor-actuator and actuator-
actuator communication and coordination may occur 
autonomously during data collection and the process of 
performing changes when detecting events. In many 
situations, sensors are usually low-cost, low-power and small 
devices equipped with limited sensing, data processing and 
wireless communication capabilities, while actuators 
typically have stronger computation and communication 
powers and more energy budget that allows longer battery 
life, and they could be mobile. Regardless, resource 
constraints apply to both of them. Depending on the 
application there may be a need to make a repaid respond 
towards the physical world, such as in fire handling systems, 
and other environment monitoring and handling systems etc. 

Therefore, the issue of real-time communication is very 
important in WSANs. Considering the design constraints of 
limited power, network dynamics, heterogeneity and 
scalability, protocols and algorithms proposed for WSNs 
may not well-suited for the unique features and application 
requirements of WSANs.  

Our goal in this paper is to propose a real-time architecture 
which provides timely reporting, reaction and execution to 
the environments upon the detection of an event, 
autonomously. The remaining of this paper is organized as 
follows. Section 2 presents the related work. In section 3, 
we outline the network module and architecture. We present 
sensor-actuator event reporting and self-aware coordination 
in section 4. And in section 5, we present the actuator-
actuator coordination mechanisms. The simulation is 
described in section 6. Finally, section 7 concludes this 
paper. 

 

II. RELATED WORK 
Real-time communication problems in WSNs are not 

new. He et al [1] proposed an outstanding real-time 
communication protocol binding the end-to-end 
communication delay by enforcing a uniform delivery 
velocity. Felemban et al proposed [2] a novel packet 
delivery mechanism called MMSPEED for probabilistic 
QoS guarantee. Chipara et al proposed [3] a real-time power 
aware routing protocol by dynamically adapting 
transmission power and routing decisions. Although a 
number of protocols are proposed for WSN, they may not 
work well when applying directly to WSAN [4, 5]. 
Stankovic et al [6] highlighted the state of the art and 
present many open research questions that must be solved. 
Shah et al [7] proposed a real-time coordination and routing 
framework that addresses the coordination of sensors and 
actuators and respects the delay bound for routing in a 
distributed manner. Durresi et al [8] presented a geometric 
broadcast protocol for WSAN. Hu et al [9] developed an 
anycast communication paradigm that can reduce both end-
to-end latency and energy consumption. Boukerche et al 
[10] proposed a routing protocol with service differentiation 
for WSANs, which provides low latency and reliable 
delivery in the presence of failures. Melodia et al [11] 
presented the first distributed coordination framework for 
wireless sensor and actuator network to made tradeoff 
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between energy consumption and delay for data 
transmission; and discussed the sensor-actuator and 
actuator-actuator coordination problems. But the authors 
only focused on scenarios with immobile actuators that can 
act on a limited area defined by their action range. Nagi et al 
[12] designed a real-time communication framework that 
supports event detection, reporting, and actuator 
coordination.  

Different from previous work, we aim to present a real-
time architecture from the application aspect, and to bind 
the application time by several sub deadlines in each phase 
of the applications. Few of the relevant work considers the 
energy efficiency and reliability of the actuators when in 
coordination, which is also resource limited; as well as 
effective self-aware sensor-actuator and actuator-actuator 
coordination by using the actuator mobility. 

 

III. AUTOMATED NETWORK ARCHITECTURE 
Each sensor and actuator has a unique id number, and 

knows its own location, which can be obtained at a low cost 
from Global Positioning System or location discovery 
algorithms. Each sensor and actuator can know its 
neighbors’ information by periodic message exchange. Each 
actuator knows its residual energy. We assume the network 
is synchronized by means of one of the existing 
synchronization protocols. The actuators are equipped with 
two radio transmitters, i.e., a low data rate transmitter to 
communicate with sensors, and a high rate wireless interface 
for actuator-actuator communication.  

We adopt the deadline partition to divide the application 
deadline into multiple sub deadlines in different phases. As 
long as the individual sub deadlines are met, we can 
guarantee the delay of the whole application process. We 
define the application delay as bound D that is the 
maximum allowed time between the instant when the 
physical features of the event area sampled by the sensors 
till the actuators finish the destined event in the area to make 
a change. We try to generally divide application-specific 
bound D into several sub-deadlines: D1 is the delay bound 
for end-to-end event reporting from sensor to actuator; and 
D2 is the delay bound for self-aware sensor-actuator 
coordination. And then D3 in the delay bound for actuator 
negotiation to make task assignment. D4 is the delay bound 
for actuator-actuator coordination process to make reaction 
and finish the event. The bound D, D1, D2, D3, D4 are all 
parameters dependent on the application requirements. 

 

IV. SENSOR-ACTUATOR COORDINATION 

A. Sensor-Actuator Event Reporting 
The designed event reporting algorithm could be 

combined with the existing routing algorithms in sensor-
actuator communication. Each actuator takes responsibility 
of collecting data from local sensors by dividing the 

surveillance field into clusters, i.e., in each cluster, the 
actuator acts as a cluster head and local sensors act as 
cluster members. Each actuator ak is assigned with a weight 
function according to a specific local sensor as weight(si, 
ak), which decided by the distance between si and ak, i.e., 
dis(si, ak), and the residual energy of ak, i.e. E(ak), as well as 
the load of ak, i.e., load(ak). The load can be calculated by 
the packets received within a certain recent interval. Each 
actuator periodically beacons its position, residual energy 
and load among its neighborhood. The higher weight of an 
actuator represents that it incurs less delay, better energy 
efficiency and more reliability. So the weight function is 
defined as: 
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So we could use weight function of actuators as a metric to 
make field partition to form each cluster cluster(ak) 
associated with the actuator ak. If there is a tie, the actuator 
with lower id wins, where: cluster(ak)={for any sensor si∈
cluster(ak)|weight(si, ak)≤weight(si, ak’), OR  weight(si, 
ak)=weight(si, ak’), id(ak)< id(ak’)} Initially, all actuators are 
with the same energy level and load (i.e., zero load), so the 
field partition is a Voronoi graph as shown in figure1.  

 
Figure 1.  Initialized network clustering based on Voronoi graph 

To bind the end-to-end delay in event reporting, the 
sensor adds a slack1 filed recording the time left in the 
current phase to its data packet that is set to D1 by the 
source sensors. The slack1 filed will be updated in sensor-
actuator communication hop by hop. We use Δ(e) to 
represent the delay on the outgoing link e in routing from 
sensor to actuator. We could estimate the Δ(e) as: 
Δ(e)=(delaytran+delaycont)*R, where delaytran is a constant 
determined by packet size and network bandwidth, and 
delaycont is contention time, and then R is transmission count. 
A source sensor si starts the event reporting algorithm by 
sending out a DetectEvt(sensor_id, hop_num, slack1, ev_id, 
actuator_id) message, in which the actuator_id is the id of 
the actuator chosen by the initialized Voronoi graph. Then 
the DetectEvt message is forwarded out by existing routing 
protocol, such as GPSR. During the forwarding, if the slack 
time is enough, i.e., slack1>=Δ(e), then the packet is 
forwarded to the next hop. When in packet forwarding 
process, if the relaying sensor finds another actuator with 
higher weight, then the packets will be routed towards the 
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better actuator. When the destination actuator receives the 
data packets, it will reply a ReplyEvt message backwards. 
Otherwise, the packet will be expired, and then a ReplyEvt 
is notified backwards, and a FindActuator message will be 
broadcasted out by the current sensor to invoke the self-
aware sensor-actuator coordination (in section 4.2). 

B. Self-Aware Sensor-Actuator Coordination 
When a sensor firstly sends out a FindActuator message, 

the self-aware sensor-actuator coordination is invoked to 
find an alternative actuator nearby to move and make data 
collection within the bound D2. We call the sensor as 
sensor-actuator coordination invoker. To provide delay-
bound coordination, we add slack2 into FindActuator 
message body to record the time left for coordination. The 
slack2 will be updated by local timestamp and encapsulated 
into message during the FindActuator message forwarded 
hop by hop. When a sensor with a reporting actuator nearby 
receives a FindActuator message, it will calculate to make 
decision and notify the actuator nearby to move and make 
data collection, if the time left is enough. And then a 
GetActuator message will be sent out backwards by the 
sensor. Otherwise, if a nearby actuator receives the 
FindActuator message and the time left is enough to move 
to the invoker position, and then a GetActuator message will 
be forwarded backwards. The moving velocity will be 
dependent on the distance to specific collecting position and 
time left for coordination recorded in slack2. 

 

V. ACTUATOR-ACTUATOR COORDINATION  

A. Event Task Assignment  
When an actuator gets the last data packet of an event 

from local sensors, it broadcasts out a Negotiate(actuator_id, 
Event_id, Event_priority) message, and we call this actuator 
as negotiation invoker. The Event_id is the id of the event 
that the actuator collects; and the Event_priority is an 
application-specific identity used to discern the urgent 
degree of each event, such as “very high”, “high”, 
“medium”, “low”, and “very low”. The event priority is 
predefined according to the application requirements. The 
node that receives a Negotiate message will reply an 
ActReply(actuator_id, energy, location, Event_id, 
Event_priority) message with its own id, event id and 
priority. The negotiation is executed in the local area of the 
actuator invoking the process. Multiple sensors placed in the 
monitoring field could be used to detect the same event, so 
one or multiple actuators will get the sensing data of the 
exact event. Through the process of backward ActReply 
message, the data of the same event (with the same Event_id) 
will be aggregated during the backward process and 
forwarded back to the first actuator that invokes the 
negotiation. If there is more than one event sensed by an 
actuator, then after the data aggregation for the same event, 
a multi-event ordered task assignment should be involved. 

The task assignment on this aggregation actuator will be 
executed according to the event priority, i.e., the event with 
higher Event_priority rank will win. If there is a tie of the 
event priority, the event with lower Event_id will win. 
Beyond the above, the aggregation actuator will get to know 
the whole area and location of the detected event through 
multi-actuator communication. The event area could be 
represented by using the left upside coordinate (Ev_Xi, 
Ev_Yi) and the right downside coordinates (Ev_Xj, Ev_Yj) 
approximately. During negotiation, we could combine each 
sub event area gathered by each actuator into the whole 
event area.  

 

B. Action Mechanism 
We assume all actuators have the same type of 

communication and acting hardware, i.e., they have the 
same maximum acting range ActRa. Let G= {g1, g2,…, gm} 
be the set of all event grids in  surveillance field. Let gi be 
the location vector for an event grid gi. Let di,k be the 
distance between gi and the actuator ak. di,k =|| gi - ak||. We 
use an acting capability metric to express the acting 
coverage over the event area in the surveillance field. The 
actuator only can act on the event within its acting range, 
and it has better acting capability to the closer event. Let 
p(gi, ak) describe the acting capability of the actuator toward 
the event occurs at gi. p(gi, ak) can be illustrated as follows: 
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The acting capability of the actuator will depend on its 
distance toward the event and also its residual energy level. 
We could use the following function to represent the 
capability of the actuators in performing actions towards the 
physical world. 
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Then the acting capability of the actuator set AS in specific 
gi is represented as follows: 

( , ) 1 (1 ( , ))
k

i i k
a AS

p g AS p g a
∈

= − −∏
         (4) 

Let Ev_Area be the specific event area. The acting 
capability of local actuator node set AS  toward the event 
area Ev_Area is defined as the summation of the acting 
coverage over the target of Ev_Area from (Ev_Xmin, Ev_Ymin) 
to (Ev_Xmax, Ev_Ymax). 

,0 0
( _ , ) ( )

x y

ip Ev Area AS p g AS dxdy= ∫ ∫     (5) 
For the acting coverage requirement in surveillance field, 

an application-related threshold pth is given to determine the 
requirement of acting capability degree for an application. 
AS’ is subset of AS (i.e., the set of local actuators that 
perform the task), so the nodes in AS’ perform the acing task 
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of event area with the acting capability should be no less 
than application desired pth. So:  

          ( _ , ') thp Ev Area AS p≥                            (6) 
To make tradeoff between reliability and energy 

efficiency, we propose the concept of acting redundancy. 
For the actuator set AS that the acting range of actuators in 
AS can cover the whole event area, each actuator ak when 
p(Ev_Area, ak)>0, will decide whether to attend the event 
execution by calculation of acting redundancy ξ,k  as follows: 

( _ , \{ })
( _ , )

k
k

k

p Ev Area AS a
p Ev Area a

ξ =
                    (7) 

When ξk ≥1, it implies that the actuator ak has no 
contribution to perform action at the specific event area. So 
this actuator will not attend the task execution for the event. 
Considering the reliability in the event reaction, we could 
invoke an application-specific ξth to make the existence of 
acting redundancy for an application. 

The actuator will decide whether to attend task execution 
by the edibility rule as follows: 
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Otherwise, if local actuators cannot provide effective 
acting coverage because of distance or energy, then the 
negotiation invoker will sign to move the actuators into 
event area and select the velocity to perform the task in 
time. For n actuator in local AS, we divide the event area 
into n sub areas evenly. So each actuator moves into the 
centroid of each sub area. The sub-deadline for making 
actuator-actuator coordination is D4 recorded by slack4 and 
encapsulated in the message. Let tk’ be the time the actuator 
ak’ takes to arrive at the sub event area, and r be the rate of 
performing appropriate actions by actuators (r is defined by 
applications). The moving actuators should satisfy formula 
(9), so the moving velocity could be calculated. 

AreaEvtBr
n

i
k _)(*

1
'4 =−∑

=

              (9) 

The maximal moving velocity is determined by the 
application. If the calculated velocity is larger than 
maximum, or the moving actuator set could not satisfy 
formula (9), the real-time event execution fails.  

 

VI. SIMULATIONS 
We report the simulation performance results when 

compared with the framework presented in [10]. The 
simulations were developed within the OMNET++ 
Simulator. We simulate the network scenario when 200 
sensor nodes are randomly deployed in a square area of 
200mX200m. The other simulation parameters are chosen 
as: the transmission range of sensors is set to 40m. The 
sensing range is set to 20m and the bandwidth to 250kbit/s. 
Sensors send 56byte long packets, and the size of the queues 
is set to 20 packets. The transmission range of actuator is 
sent to 80m, and the acting range of actuator is sent to 100m. 

The initial energy of all sensors is 1J, and all actuators with 
initial energy 2J. The communication power is set to 
50nJ/bit, the moving power is set to 0.001W/m, and the 
action power is set to 0.001W/m2. The event area is 
rectangle with varying ranging from 10mX10m till 
100mX100m in different simulations. The centroid of the 
event area is randomly selected such that the event area 
completely falls into the terrain. According to our 
framework, the application completion bound B is set to 50s, 
and then each sub-deadline D1, D2, D3, D4 in sub-phase is 
set to 10s, 10s, 10s, and 20s. The Routing is using GPSR 
protocol, and the MAC layer is based on CSMA/CA. We 
perform terminating simulations that last 200s, average over 
different random topologies. The phenomenon is generated 
by 5 events at 50s, 100s, and 150s, respectively.  

A. Sensor-Actuator event Reporting 
The event area is randomly deployed in a square area of 

25mX25m in the surveillance field, while the number of 
actuators is increased from 4 to 12 in different simulations. 
In figure2, the residual energy of actuators of our algorithm 
is better than the closest-actuator event reporting. The 
improvement of energy efficiency of our algorithm is 
slightly higher than the closest-actuator event reporting as 
the number of actuators increase. In figure3, the results 
show that the packet delivery ratio with varying number of 
randomly deployed actuators, which is shown that our 
algorithm selecting actuators with less load will help to 
improve successful the sensor-actuator data packet delivery.  
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Figure3. Sensor-actuator packet delivery ratio with different number 

of actuators 

B. Self-Aware Sensor-Actuator Coordination 
We consider a scenario with homogeneous actuators 

randomly deployed in the 200mX200m, where event area is 
randomly deployed in a square area of 25mX25m. We set 
the coordination delay to 1s. Moreover, the maximal 
moving velocities of actuator is set to 12 m/s. Figure4 
illustrates the deadline miss ratio in the sensor to actuator 
communication procedure as the number of actuators 
increases from 2 to 12. It is shown that the miss ratio of our 
algorithm is much less than the other two algorithms, 
because the alternative actuator could move and help to 
maintain an effective real-time sensor to actuator 
communication by self-aware sensor-actuator coordination 
process. The results in figure5 show our sensor-actuator 
communication and coordination is slightly better on 
residual actuator energy. Because the actuator will move 
and consume energy, the advantage of communication with 
self-aware sensor-actuator coordination is not obvious when 
the actuator number is relatively small. And then as the 
actuator number increases enough, our communication 
algorithm has better energy efficiency for actuators because 
we consider the energy in clustering process by hybrid 
clustering.    
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Figure4. Sensor-actuator communication miss ratio with different number 

of actuators 
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Figure5. Average residual energy of actuators with different number of 

actuators 

C. Actuator -Actuator Communication and Coordination 
In Ngai’s framework, the coordination involved actuators 

determine which of them will perform the appropriate 
actions, and they simply select the actuators located closer 
to the event to move to the event area and react with the 
same speed (we set the speed to 6m/s in simulations) for 
moving and reacting to the event. The simulation results in 
figure6 show our paradigm has less miss ratio than Ngai’s 
real-time framework, because we consider the effective 
acting range and acting capability for each actuator and then 
to make coordination decision toward the event area to 
provide enough acting coverage in time. Figure7 shows the 
residual energy of actuators of our paradigm and Ngai’s 
framework as the number of actuators increases. The results 
illustrate that our coordination has better energy efficiency 
for actuators, because we consider both acting range and 
energy level that actuators could provide in the multi-
actuator coordination process.  
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VII. CONCLUSION S 
We present a soft real-time architecture for automated 

wireless sensor and actuator networks. We consider the 
heterogeneous characteristics and functionalities of sensor 
and actuators, and offer a distributed, self-organized and 
comprehensive solution for real-time energy-efficient 
communication and coordination mechanisms in WSAN. It 
provides efficient sensor-actuator event reporting algorithm 
considering the delay, energy and load for actuators. Then a 
self-aware sensor-actuator coordination requirement 
mechanism is presented to find the actuator nearby to move 
and collect sensing data in time. The actuator-actuator 
negotiation is designed to make ordered task assignment for 
multiple events with different priorities. And then the multi-
actuator makes coordination to select actuator and finish the 
task in time.  
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