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Abstract  
 
Using data aggregation to reduce power consumption 
is a well studied area. In this paper we show a new 
result: data aggregation can also be used to increase 
reliability.  In scenarios where status is being 
collected from every node (e.g. network management), 
one measure of reliability is the completeness (nodes 
included). Using some of the power savings from 
aggregation to increase the retransmission limit for 
aggregated data gives significant improvements in 
completeness. The contribution of this paper is in 
providing a detailed comparison of the completeness 
and energy efficiency for aggregated and non-
aggregated data. Results, derived by numerical 
analysis and simulation, show that with data 
aggregation and increased retransmission limits, 
reliability can be substantially improved, while still 
saving power. These results are applicable to 
designing network management protocols for Wireless 
Sensor Networks, as well as for other scenarios where 
high completeness is required for network-wide data 
collection. 
 
 
1. Introduction 
 

Determining the collective status of all the nodes 
in a WSN (wireless sensor network) is a fundamental 
building block for network management. For large 
scale networks, the individual management of nodes is 
impractical (and inefficient). The motivation for the 
work presented here is the monitoring of node 
software update status as part of the software update 
process, as discussed in [1] and [2], but the results 
presented here are applicable to other network-wide 
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management and data-collection activities requiring 
near-100% completeness.  

In this paper we investigate the problem of 
reliably collecting status information from all the 
nodes in a WSN based on a request from a 
management station. This form of status collection 
differs from sensor event collection in several ways: it 
does not inherently require a flow of data from each 
node; it is infrequent; it is not triggered by a sensor 
event; it requires a result that is collected from near-
100% of the nodes; and it needs to work on a wide 
range of WSNs (thus implying the need for 
scalability).  

There is a lack of extensive studies on the 
relationship between data aggregation and reliability 
(as measured by completeness) despite the importance 
of aggregation for collecting data in Wireless Sensor 
Networks. The contribution of this work is to provide 
a detailed study, allowing various design tradeoffs to 
be clearly identified. 
 
2. Related Work 
 

Data Aggregation is a key mechanism for WSNs, 
and reduces energy use through reduced transmissions 
by processing raw data en route and delivering just the 
results [3]. Efficiency issues are addressed in SPIN [4] 
which uses meta-data communications to eliminate 
redundant data transmission, and LEACH [5] is a 
routing protocol for low energy, hierarchical clusters, 
aggregating data and transmitting it directly to the 
base station. In [6] a new aggregation quality metric 
DAQ is proposed, and used to propose two new 
protocols for aggregation: Enhanced LEACH and 
Clustered PEGASIS, where data aggregation takes 
place in the cluster heads. 

In [7] it is shown that data distribution and 
collection tasks can be performed optimally on tree 
networks. In [8] the performance of a greedy 
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algorithm to build trees in networks of differing 
densities is evaluated. Our work does not examine the 
spanning-tree generation or request phases, as 
supported for example in Directed Diffusion [9], 
SNMS/Drip [10], and REAR[11].  

TAG [12] introduces the idea of aggregation as a 
high-level, application-independent service to realize 
these performance benefits. It also introduces the idea 
of an aggregation function. This is developed further 
in [13], which extends the classes of data aggregation 
from simple types such as SUM and COUNT to 
include MEDIAN, Consensus values, Histograms, and 
ranges.  

Retransmissions can be used to improve 
reliability: as shown for PSFQ in [14], hop-by-hop 
error recovery is significantly more effective than end-
to-end recovery in a wireless environment. For a WSN 
environment, data aggregation does not effect 
reliability in terms of the number of reports received at 
a root node from a source (the expected value) when 
compared to the non-data aggregation case [15]. But it 
does increase the variability. 
 
3. Completeness 
 

We define completeness to be a measure of the 
reliability of the response to a query made to multiple 
nodes. It is defined as the ratio of the actual number of 
responses received to the expected number of 
responses. 

( )
E
A

EAC =,  

where: 
 A = {x | a response from node x is received} 
 E = {x | a response from node x is expected} 

EA ⊆  
 
The completeness depends on the effectiveness of 

two factors: the query propagation, and the response 
delivery. In this paper we address the impact of data 
aggregation on the response delivery effectiveness. 

The completeness of a network-wide management 
response depends on the end-to-end reliability of each 
node in the WSN. There are two way to try and ensure 
maximum end-to-end reliability in a WSN: sending 
the same datum multiple times in a stream, thus 
increasing the probability that at least one of the 
instances will be received [9][10]; and sending the 
datum once (“one-shot”) with acknowledgements and 
local re-transmissions [14] to improve the probability 
that an unduplicated data instance will be received. As 
we show in our results, a “one-shot” response results 
in significantly less traffic. 

In the examples addressed here, we consider a 
WSN scenario where all the nodes report 
“aggregatable” data to a root node. By ‘aggregatable’, 
we mean data that allows for the aggregation of 
multiple values from multiple nodes without 
increasing the space requirements in the packet(s) 
used to transfer the data: it is thus scaleable. Network-
wide status information such as SUM, COUNT, 
minima, and maxima would fall into this category 
[13]. A network-management example, based on the 
original motivation for this study, would be in 
determining the number of nodes that are running a 
new software version following the activation of a 
software update [1]. The completeness of an 
aggregated report measures the number of responses 
incorporated into that report. 

 
4. Analysis 
 

The parameters used are defined as follows: 
a: aggregation degree in a packet (response count) 
d: spanning-tree depth (in hops from the sink) 
f:  spanning-tree fan-out (number of children) 
n:  number of reporting nodes  
p:  per-link probability of single transmission 

success 
q:  per-link probability of a packet being received 

successfully with retransmissions 
t:  transmit limit (for non-aggregated data) – the 

maximum number of retransmissions=(t-1) 
u:  modified transmit limit for aggregated data (see 

the policies defined in section 5) 
v: the actual number of transmissions used on a 

link (including data & acks) 
For a set of responses sent up a tree from a node 

(Fig. 1A) the number of reports received at the sink is 
the same whether each report is sent individually, or 
all are aggregated into a single packet [15]. 
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Figure 1. Single & multiple data sources 

 
We now examine the situation where every node 

in the tree is a source (Fig. 1B). There are two cases: 
each node sends it own report, or each node 



 

aggregates its own data as the report from Source 1 
propagates up the tree.  

 
4.1. Non aggregated case 
 

Pr(receive from source at depth i)= iq  

=A ∑
=

n

i

iq
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Packets=v+(v+qv)+(v+qv+q2v)… - n terms 
            = ( )...)2()1( 2 +−+−+ qnqnnv  - n terms 
Pr(100% success)=qn*qn-1*qn-2...*q=qn(n+1)/2 

 
4.2. Aggregated case 
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Packets=v+v+…+v – n terms 
           =vn 
Pr(100% success)=qn 

 
Thus the aggregated case provides the same 

average completeness, with a higher probability of 
100% completion, using fewer packets. Thus we can 
improve the completeness by using some of the saved 
packets for extra retransmissions. Due to the 
complexity of the equations we explore this 
numerically. 

 
5. Numerical analysis 

 
In the analysis shown below, figures of p=0.7 and 

t=3 are used, giving a base per-link packet success rate 
(q) of 0.973 (with retransmissions). 

The results for a balanced spanning-tree of 258 
nodes are shown in Table 1 and Fig. 2. These show 
the improvement in the completeness of the response 
for five different aggregated transmit limit policies: 

a) non-aggregated data (transmit limit t) 
b) aggregated data (modified transmit limit u=t) 
c) aggregated data (u=2t) 
d) aggregated data (u=at) 
e) aggregated data (u=2at) 
f) aggregated data (u=4at) 
g) aggregated data (u=8at) 
In this analysis we are using packets transmitted 

to compare power consumption: typical WSN radio 
receivers (e.g. CC2420) use the same amount of 
power in receive mode whether actually receiving or 
not. We also assume contention is avoided by the 
MAC layer – in practice, reducing the number of 
transmissions will reduce MAC-layer contention [9] 
and thus increase the power efficiency. 
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Figure 2. 
Completeness vs aggregation policy 

(d=3,f=6,t=3,p=0.7,n=258) 
 

Note that the variability, shown by the standard 
deviation (SD) for aggregated data (u=at) is similar to 
that for non-aggregated data. Note also, that as the 
maximum transmit limit increases (from at to 8at) the 
average number of reports delivered approaches 
100%. The detail in Table 1 shows that the energy 
used increases slightly as u increases, but is 
significantly less than for non-aggregated data. The 
energy per report is also significantly lower. 

Data aggregation has the maximum effect for a 
very deep spanning-tree, and minimum effect for a 
very shallow one. Fig. 3 shows the effect on the 
completeness of varying the height and fan-out of the 
spanning-tree. The total number of reporting nodes is 
kept at approximately 256 – as a balanced spanning 
tree is used it is not possible to keep this number 
exactly constant, and the reports received is 
normalized in the range (0..1). 

 
Table 1. Completeness for different policies 

(d=3,f=6,t=3,p=0.7,n=258) 
 

Policy Reports Avg Reports SD  Total-tx 
Not agg 173.172 7.523 1923

u=t 172.738 30.771 776
u=2t 245.206 14.803 879
u=at 229.292 5.023 796

u=2at 254.19 1.941 882
u=4at 257.932 0.26 895
u=8at 258 0.01 895

 
With the selected parameters (p=0.7, transmit-

limit=3), the non-aggregated data case performs very 
badly for a very deep spanning tree, and performs as 
well as the u=t aggregated data case for a very shallow 
tree. The u=2at policy provides good completeness; 
the u=4at policy provides near 100% completeness. In 



 

Fig. 4 the energy cost of each policy is shown (packets 
transmitted). 
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Figure 3. Effect of tree width and depth  
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Figure 4. Energy efficiency of different 

policies (for clarity, the policy axis is inverted 
wrt Fig. 3) 

 
Note that in all cases, except for the single-hop 

spanning tree, the non-aggregated cost is significantly 
greater than the aggregated data cost. As the policy 
gradually increases the transmit limit, the energy cost 
rises slightly for improvements in completeness. 

Fig. 5 shows the effect of varying the probability 
of packet loss between nodes “p“ on the completeness. 

When the packet loss rate is small, then the 
completeness ratio becomes independent of the policy. 
But for larger packet loss rates (smaller values of p), 
typically associated with wireless communication, the 
quality of the response is significantly improved using 
aggregation with increased transmission limits. 
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Figure 5. Completeness for varying “p” 

 
The significantly reduced energy usage, as 

measured by the number of packets transmissions, 
allows the transmission limit to be increased in the 
aggregated data case without a severe power cost (see 
Figure 6). This results in improved reliability 
(completeness), and reduced variability. The results of 
using different policies to modify the transmission 
limit for aggregated data are shown below.  
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Figure 6. Energy efficiency for varying “p” 

(note: inverted ‘p’ axis wrt Fig. 3) 
 

The results show that increasing the transmission 
limit for aggregated data leads to increased reliability, 
while losing little of the energy gains. The analysis 
shows that near 100% completeness can be achieved 
using data aggregation and a weighted transmission 
limit. For a wide range of network configurations and 
values of pij, the policy u=4at seems to be the best 
balance between energy use and reliability.  



 

 
5.1. Large numbers of retransmissions 
 

Large numbers of retransmissions lead to: 
1. increased latency of responses, and 
2. increased time to respond to a node failure. 
These problems associated with this can be 

addressed in a number of ways: 
o limiting the maximum value of 

retransmissions, 
o accepting the increased latency as the cost of 

high-completeness, or 
o running spanning-tree maintenance in 

parallel with re-transmissions (using a 
threshold less than the transmit limit to 
initiate S/T repair). 

In practice, there is little point in increasing the 
retransmit limit too far: for example, if p=0.7, a 
transmit limit of 8 will provide a packet success rate 
with retransmissions (q) of 99.99%. Fig. 7 shows the 
effect of limiting the maximum number of 
transmissions to partially address this issue. A 
maximum transmit limit of 8 was found to be effective 
for a 250 node network with p=70% - this result is 
valid except for very deep networks (>32 hops). The 
transmit limit was set to a maximum of 64 (the largest 
value actually attained was 28). 
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Figure 7. Completeness vs policy for different 

transmit limit maxima 
 
6. Simulation results 
 

The results achieved here were verified using the 
TinyOS2/TOSSIM simulator (See TinyOS 2.0 
distribution for details, at http://www.tinyos.net) with 
a 225-node network and the standard “15-15-medium-
mica2-grid.txt” network configuration file provided. 
The details are not crucial to these results, as spanning 

trees were created from the network configuration by 
selecting links with the required link qualities (‘p’). 

Duplicate data is avoided by using the standard 
Alternative Bit Protocol (ABP). This requires a 
minimum amount of data to be kept per neighbour. An 
alternative policy using 3-way handshaking was also 
examined: at the cost of an extra packet (an ack-ack) 
per data packet, the memory requirement is reduced to 
keeping details on a single neighbour conversation at 
any one time. The results are not shown here, but they 
provide slightly lower efficiency and completeness 
results in exchange for increased scalability. The 
simulation results also include data streaming, where 
the same data value is sent multiple times to the sink, 
as used for example in [10]. We include results with & 
without local acknowledgements and retransmissions. 

Space does not allow presentation of the full 
simulation results, so representative results are shown 
in figures 9-12. Two different spanning trees, built 
offline, are used: one is a ‘deep’ spanning tree (max 
depth=37, root children=1); the other is a ‘broad’ 
spanning tree, representative of those produced by 
algorithms such as [d] (max depth=8, root 
children=13). In creating the spanning trees, ranges of 
link strengths & noise levels were selected to try and 
maintain an average receive probability of c. 70%, 
based on prior measurements of packet reception 
rates. The base transmission limit is set to 3 (allowing 
for 2 retransmissions). In the streaming data cases, the 
number of data values to send is set to 3. 

Fig. 8 shows the completion rates for the two 
spanning trees used. 
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Figure 8. Completion rates for different trees 

 
Note that neither tree is as ‘extreme’ as those 

shown for Numerical Analysis (Fig. 3), so the results 
are closer to each other. Fig. 9 shows the energy 
efficiency. Note the inclusion of non-aggregated, 
streaming data. The high number of duplicates 
delivered reduces it efficiency significantly. The 
aggregated policies all have much higher efficiencies 
(for an average p=0.7). 
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Figure 9. Energy efficiency for different trees 

(p=0.7) 
 

Figs. 10 and 11 show the effect of varying the 
link quality (p) on the completion rate and energy 
efficiency of different aggregation policies. Larger 
uvalue policies achieve near 100% completion for 
weaker links. 
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Figure 10. Effect of  p on the completion rate 

(broad spanning tree) 
 
Aggregated data performs much better from an 

energy viewpoint. Note that the u=t policy loses 
highly aggregated packets at low link quality values 
(Fig. 11). Streaming data without acknowledgements 
leads to a low completion rate at a large cost. 
Streaming with acknowledgements provides a higher 
completion rate, but at a cost due to duplication of 
reports to the root. 
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Figure 11. effect of p on the energy efficiency  

(broad spanning tree, link quality axis 
inverted) 

 
Fig. 12 shows the impact of asserting a maximum 

on the transmit limit (u) for the broad spanning tree.  
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Figure 12. Effect of a maximum transmit limit 

 
In summary, as shown in both the numerical 

analysis, and the simulation results, data aggregation 
can significantly reduce the power used in reporting 
collective, network-wide status to the root of a 
spanning tree (especially for nodes nearer the root). 
The reliability, as measured by the completeness, is 
also significantly improved by using data aggregation 
and an increased retransmission limit for aggregated 
data packets. Data streaming (with local 
acknowledgements) can increase the completion rate, 
but at a significant energy cost, and resulting in the 
delivery of many duplicates to the root (not shown 
here). Increasing the transmission limit for non-
aggregated data improves the completion rate 
somewhat, but again at a very significant energy cost. 
The improvements provided by aggregation are 
greater for deeper spanning trees. 

 



 

12. Conclusion 
 
The completeness of network-wide, management 

responses in wireless sensor networks can be 
significantly improved by aggregating all the 
responses, and using retransmissions with an 
aggregation-proportional transmission limit. This 
results in a high probability of near-100% 
completeness of response, while still realizing 
significant power savings when compared to the non-
aggregated case. Streaming the same data value 
multiple times without aggregation is particularly 
inefficient, as the source sends duplicate data values 
even after successful reception at the root. 

Increasing the transmission limit can lead to 
increased delay in reacting to node failures. This can 
be limited by setting a maximum value for the transmit 
limit. Effective values for the limit depend on the 
reception success rates for each link in the spanning 
tree; this emphasizes the importance of using link 
quality metrics when building the tree [10]. 

Addition benefits can be achieved by using data 
aggregation and aggregation-dependent transmit 
limits. The reduction in data traffic means that the 
network management operation will have a reduced 
impact on normal WSN data collection activities. 
Also, though not explored here, the reduction in 
packets provides an opportunity to reduce the time 
required to complete the collection of network-wide 
status data. 

Future work is to explore dynamic spanning tree 
generation policies and determine their impact on the 
completeness of the aggregated response. We also 
plan to implement the data aggregation approaches 
examined here in a real-world sensor network, and 
validate the completeness and energy results. 
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