
Adding Preemption to TinyOS

Cormac Duffy∗, Utz Roedig†, John Herbert∗, Cormac J. Sreenan∗

∗Computer Science Department, University College Cork, Ireland
†InfoLab21, Lancaster University, Lancaster

ABSTRACTEvent-driven operating systems su
h as TinyOS are the pre-ferred
hoi
e for wireless sensor networks. Alternative de-signs su
h as MANTIS following a
lassi
al multi-threadedapproa
h are also available. Event-based systems are gen-erally more energy e�
ient than multi-threaded systems.However, multi-threaded systems are more
apable than event-based systems of supporting time
riti
al tasks as task pre-emption is supported. Timeliness
an be traded for energye�
ien
y by
hoosing the appropriate operating system. Inour re
ent work we have shown that the multi-threaded sys-tem MANTIS
an be modi�ed to be as energy e�
ient asTinyOS. As a result, the modi�ed MANTIS
an be used to�t both sensor network design goals of energy e�
ien
y andtimeliness. This solution is not
onsidered optimal as mostexisting sensor network appli
ations and software librariesare developed for TinyOS. Therefore, we present aTinyOS modi�
ation that adds preemption while retainingthe existing TinyOS stru
ture and features.
1. INTRODUCTIONSensor nodes must be designed to be energy e�
ient in or-der to allow long periods of unattended network operation.However, energy e�
ien
y is not the only design goal in asensor network. For example, timely pro
essing and report-ing of sensing information is often required as well. Thismight be needed to guarantee a maximum delivery time ofsensing information from a sensor, through a multi-hop net-work, to a base-station. To be able to give su
h assuran
es,network
omponents with a deterministi
 behavior will berequired. The operating system running on sensor nodes isone su
h
omponent.Event-based operating systems are
onsidered to be thebest
hoi
e for building energy e�
ient sensor networks asthey require little memory and pro
essing resour
es. Hen
e,the event-based TinyOS [1℄ is
urrently the preferred op-erating system for sensor networks. Event-based operatingsystems are not very useful in situations where tasks have
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EmNets ’97 June 25-26, 2007, Cork, Ireland

Copyright 2007 ACM 978-1-59593-694-3/07/06 ...$5.00.

pro
essing deadlines. As tasks are pro
essed sequentially,prioritizing important tasks to meet pro
essing deadlines isnot possible. Multi-threaded operating systems are moresuitable if su
h requirements must be ful�lled. Thread pre-emption and
ontext swit
hing enables su
h systems to pri-oritize tasks and meet deadlines. The MANTIS [2℄ operatingsystem is a multi-threaded operating system designed spe
if-i
ally for wireless sensor networks. MANTIS has a relativelyhigh pro
essing overhead for thread management. This pro-
essing overhead is dire
tly related to redu
ed energy e�-
ien
y be
ause of the relative in
rease in CPU a
tivity.This
reates the dilemma that both design goals - en-ergy e�
ien
y and timeliness -
an only
urrently be opti-mized independently. One is for
ed to
hoose whi
h goal isof higher importan
e in the
onsidered appli
ation s
enario.Therefore, it would be good if the dilemma
ould be resolvedby either making MANTIS more energy e�
ient or TinyOSmore responsive.Our previous work [3℄
on
entrated on the �rst option:A MANTIS kernel modi�
ation to in
rease power e�
ien
y.As the results show, MANTIS
an be modi�ed to be aspower-e�
ient as TinyOS without impa
ting vital kernelfun
tionality. Thus, the modi�ed MANTIS
an be used tosolve both important sensor network design goals. The re-sult of this previous work also shows that the
ommon beliefthat �multi-threaded operating systems are not suitable forresour
e
onstrained sensor networks� is not ne
essarily true.The modi�ed MANTIS provides a solution for our pre-viously outlined dilemma but has other
onsiderable limi-tations. The sensor network
ommunity sele
ted TinyOSas the defa
to standard with most existing appli
ations, li-braries and devi
e drivers available for TinyOS. Therefore,to avoid re-
oding existing software and allow re-usage of ex-isting TinyOS infrastru
tures it is worth exploring the se
-ond option: A TinyOS modi�
ation to in
rease system re-sponsiveness. This paper presents a modi�
ation that addspreemption to TinyOS whi
h results in a responsive systemthat retains its existing stru
ture and features.The next Se
tion of the paper presents related work. Se
-tion 3 des
ribes brie�y TinyOS and explains its limitationsin terms of responsiveness. Se
tion 4 explains in detail ourTinyOS modi�
ations to add preemption. Se
tion 5 presentsan evaluation of the modi�ed system. It is shown how exist-ing appli
ations
an take advantage of the new preemptives
heduler. Se
tion 6
on
ludes the paper.
2. RELATED WORKIn [4℄, the TinyOS operating system is exe
uted within a

multi-threaded AVRX kernel as part of a
on
urren
y anal-ysis study. Thus, any TinyOS task
ould be preempted byanother AVRX thread. This solution has some drawba
ks.The solution is bound to AVR based mi
ropro
essors. Fur-thermore, the AVRX kernel provides many threading fea-tures not ne
essarily needed for event-based programming.The system has memory requirements of both, TinyOS andthe AVRX kernel.A similar approa
h with
omparable limitations
an beseen in [5℄. Here, the TinyOS operating system is exe
utedas a thread within the multi-threaded MANTIS operatingsystem. The resulting TinyMOS system has a large memoryfootprint (see Se
tion 5). Many
ontext swit
hes (for exam-ple, introdu
ed by time-sli
ing)
reate a signi�
ant pro
ess-ing overhead (see [3℄). In addition, TinyOS and MANTISprogramming semanti
s are mixed whi
h makes TinyMOSusage di�
ult.A di�erent approa
h is des
ribed in [6℄. Here, a multi-threading library for TinyOS
alled TinyThread is presented.The TinyThread library provides TinyOS programmers witha thread programming abstra
tion but does not enable taskpreemption. A thread s
heduler in the form of a TinyOStask is periodi
ally pla
ed in the task queue. Threads arethen s
heduled and run to
ompletion or until they blo
k.This approa
h allows users to multiplex standard TinyOStasks and threads, but does not fa
ilitate preemption and
annot provide any degree of performan
e
ontrol. Further-more, threads are programmed in a di�erent fashion to nor-mal TinyOS
ode whi
h does not allow a seamless integra-tion of TinyThreads with existing TinyOS appli
ations.The approa
h presented in this paper di�ers from the de-s
ribed existing works in major aspe
ts. Thread preemp-tion is added natively to TinyOS. Context swit
hing is onlyused to fa
ilitate task preemption and not to introdu
e athread programming abstra
tion. Standard TinyOS pro-gramming
onventions are used su
h that preemption fea-tures are seamlessly integrated.
3. THE TINYOS ARCHITECTUREThis se
tion �rst des
ribes the basi
 TinyOS fun
tionalitya�e
ted by our modi�
ations. Thereafter, the limitations ofTinyOS motivating our modi�
ations are dis
ussed.
3.1 Basic FunctionalityThe TinyOS system and spe
ialized appli
ations are writ-ten in a
omponent based programming language
alled nesC.The
omponents are self
ontained modules of
ode that in-tera
t with ea
h other through stri
t interfa
es. A
ompo-nent interfa
e is
hara
terised by a number of event handlingfun
tions. Event-based appli
ations are implemented as se-ries of event-handlers and tasks. TinyOS tasks are deferredfun
tion
alls that are pla
ed in a simple FIFO task-queuefor exe
ution. TinyOS tasks are taken sequentially from thequeue and are run to
ompletion. On
e running, a TinyOStask
an not be interrupted (preempted) by another TinyOStask. Event-handlers are triggered in response to a hard-ware interrupt and are able to preempt the exe
ution of a
urrently running TinyOS task. Event-handlers perform theminimum amount of pro
essing to serve the event. Furtherpro
essing is performed within a TinyOS task that is nor-mally
reated within the event handler. After all TinyOStasks in the task queue are exe
uted, the TinyOS systementers a sleep state to
onserve energy. The sleep state is

Idle Idle

time

Task
Processing

Interrupt
Processing

T2

E1 E2 E4E3

T4T1 T3

A)

Idle Idle
Task
Processing

Interrupt
Processing

T2

E1 E2 E4E3

T4T1 T3

B)

Idle Idle
Task
Processing

Interrupt
Processing

T2

E1 E2 E4E3

T4T1

T3 C)

Idle Idle
Task
Processing

Interrupt
Processing

T2

E1 E2 E4E3

T4T1A T3

D)

T1BFigure 1: TinyOS task pro
essing optionsterminated when an interrupt o

urs.
3.2 TinyOS LimitationsA new TinyOS task is normally posted to the s
hedulerfrom within an interrupt and usually pro
esses data thatwas obtained during the interrupt routine. For example,the interrupt
ould signal sensor a
tivity or the arrival ofa network pa
ket; the
orresponding task will then pro
essthe sensor reading or handle the in
oming data pa
ket. Anew task is inserted at the end of the FIFO task queue andit is exe
uted as soon as all other tasks in the queue havebeen pro
essed. Fig 1 A shows an example of four events
reating four di�erent tasks during interrupt handling topro
ess the data. The problem is that some tasks might be ofhigher importan
e than others and it is desirable to s
hedulethem before all others. For example, it might be desirableto handle a network pa
ket before pro
essing new sensorinformation in order to assure pa
ket forwarding deadlines.This limitation of the FIFO task s
heduling in TinyOS 1.0was re
ognized and thus the new version TinyOS 2.x o�ersthe option to alter the task s
heduler whi
h allows us toprioritize spe
i�
 tasks. For example, as shown in Fig 1 B,task T3
an be queued before T2 to prioritize pro
essingof the third event. Our TinyOS modi�
ation presented inthe next se
tion will make use of this feature introdu
ed inTinyOS 2.x.The possibility of re-ordering tasks improves the event-handling
apabilities of the operating system. However, asevere limitation of the system still exists. If a task is
ur-rently exe
uting, a new task
reated during an interrupt willbe exe
uted after the
urrent task �nishes pro
essing. Thetime at whi
h this new task will be s
heduled
annot be
ontrolled in TinyOS 2.x as it is impossible to preempt the
urrently running task. In the example Fig 1 B, task T3 isprioritized but still has to wait for T1 to �nish before it isexe
uted. Some tasks
an have a long pro
essing durationwhi
h will defer the exe
ution of an important task for anuna

eptably long period of time.Currently, this limitation
an be addressed in two di�er-ent ways. One option is to move task pro
essing fun
tion-ality in the interrupt pro
essing routine (see Fig 1 C). The
urrently running task is preempted and high priority pro-
essing is performed in the interrupt
ontext. This solution

is not optimal as interrupts are disabled in TinyOS whileexe
uting an interrupt. For example, if in Fig 1 C E4 wouldo

ur earlier during pro
essing of T3 in the
ontext of E3 thehandling of E4 would be deferred to the end of T3. If E4 hasa higher priority than E3,
ontrol over exe
ution times willbe lost at this point. Another option is to split longer tasksinto smaller subtasks. For example, in Fig 1 D task T1 issplit in two smaller tasks T1A and T1B . T1A is posted beforetask T1B and therefore task T3
an be s
heduled before T1B .This solution is not always optimal, as not all tasks
an besplit-up easily into several sub-tasks [7℄. In addition, theprogrammer has to ensure that task-splitting is organizedsu
h that all pro
esses
an meet their deadlines, whi
h isquite di�
ult to a
hieve in a pra
ti
al s
enario.
4. THE TINYOS MODIFICATIONSTo mitigate the TinyOS limitations des
ribed in the previ-ous se
tion priority s
heduling and task preemption is addedto the TinyOS 2.x operating system.
4.1 Priority SchedulingTinyOS 2.x fa
ilitates
omponent-based s
hedulers that
an be in
luded in the operating system if required. The �rststep in our TinyOS modi�
ation is the development of a newpriority based s
heduler
omponent to repla
e the providedstandard TinyOS 2.x FIFO s
heduler. Depending on theperforman
e requirements of the user appli
ation, this newPriority Level S
heduler (PL s
heduler)
an be wired intothe appli
ation to fa
ilitate greater
ontrol over whi
h tasksare pro
essed �rst. The PL s
heduler provides �ve di�erentpriority levels:

• (P1) High Priority Preemptive
• (P2) High Priority Non-Preemptive
• (P3) Basi
 Priority (Used for standard TinyOS tasks)
• (P4) Low Priority Non-Preemptive
• (P5) Low Priority PreemptiveIn ea
h level, tasks are s
heduled in a FIFO manner. Thebasi
 priority level must always be supported as all standardTinyOS tasks are queued here by default. The adja
entpriority levels provide a non preemptive higher and lowerpriority queue. Thus, tasks in either of these queues will bes
heduled a

ording to their priority but will not preemptany a
tively running task resulting in a behavior as shownin the example Fig 1 B. The high priority preemptive taskand the low priority preemptive task queues
an be used tos
hedule preemptive tasks. A high priority preemptive taskwill preempt any running task from the lower priority tasklevels and any task from these levels
an preempt a runninglow priority preemptive task. Implementation details of thepreemption me
hanism are des
ribed later.In pra
ti
e not all levels of priority are ne
essary and assu
h allo
ating a task queue for �ve di�erent priority levels
an
reate a bloated s
heduler. The
omponent ar
hite
tureof TinyOS fa
ilitates
ounting up the number of tasks at
ompile time. The PL s
heduler
an determine exa
tly howmany queues are required and the
ode elimination featuresof the nesC
ompiler remove redundant interfa
es for taskpriorities not used. If more than �ve priority levels are re-quired, the PL s
heduler
an be extended to provide these.

Idle Idle

time

Task
Processing
Context 2

Interrupt
Processing

T2

E1 E2 E4E3

T4T1

T3

A)

Task
Processing
Context 1

preempt()

Idle Idle

Task
Processing
Context 2

Interrupt
Processing

T2

E2 E4E3

T4T3

B)

Task
Processing
Context 1

Idle Idle

Task
Processing
Context 2

Interrupt
Processing

E1 E3

T1 T3

C)

Task
Processing
Context 1

grace period t for T3Figure 2: Modi�ed TinyOS task pro
essing optionsHowever, we believe that �ve levels are su�
ient to support
ommon sensor network s
enarios.
4.2 PreemptionTask preemption is fa
ilitated by the PL s
heduler forsituations in whi
h a
ooperative task s
hedule will not meetthe appli
ation's temporal requirements.
4.2.1 Conceptual IdeaTask preemption requires
ostly
ontext swit
hes that haveto be supported by the operating system. These
ontextswit
hes must be implemented
arefully to avoid a signi�-
ant in
rease in system overhead and energy
onsumption.Our previous resear
h [3℄ on optimizing preemptive s
hedul-ing for the multi-threaded MANTIS system highlighted thatit is of paramount importan
e to redu
e the number of
on-text swit
hes. With this design requirement in mind thePL s
heduler avoids preemption where possible using twodi�erent prin
iples.As a �rst prin
iple, a
ontext swit
h is only performed ifit is ne
essary to mat
h pro
essing deadlines. An exampleof this behavior is illustrated in Fig 2. Task T1 is exe
ut-ing with basi
 priority P3 and a task T3 with priority P1(high priority preemptive) is s
heduled at the end of the in-terrupt routine E3. A
ontext swit
h is now ne
essary topro
ess the high priority task T3. Thereafter, the
ontextis swit
hed ba
k and the original task T1 exe
utes to
om-pletion (see Fig 2 A). If the same high priority task T3 iss
heduled in a s
enario where the system is idle (see exam-ple Fig 2 B), no
ontext swit
h is performed and the taskexe
utes immediately. In this
ase the high priority task T3will be exe
uted in the standard
ontext. In other words,a
ontext swit
h is not asso
iated with the priority level ofa task, it is asso
iated with the need for preemption. Thisme
hanism redu
es the number of
ontext swit
hes
om-pared to existing preemption te
hniques in multi-threadedsystems where the exe
ution of a higher prioritized threadis normally bound to a
ontext swit
h (for example, [5℄).As a se
ond prin
iple to redu
e
ontext swit
hes, a gra
e

Algorithm 1 Priority Task Stru
ture1: Module SomeComponentC{2: uses interfa
e PriorityTask<HighPreempt>;3: }4: Implementation{5: event void someEvent(){6:
all PriorityTask.postTask()7: }8:9: event PriorityTask.runTask(){10: //task
ode11: }12: }13: Configuration SomeComponent{14: }15: implementation{16:
omponents new PriorityTask() as PremptingTask;17:
omponents SomeComponentC,18: SomeComponetC.PriorityTask->PremptingTask;....19: }period t for preemption is used. It is assumed that manyhigh priority tasks need to be exe
uted within a spe
i�
 timeframe but not ne
essarily immediately. A timer is used tomark the latest possible point in time when the task mustbe exe
uted to mat
h deadlines. If
urrently running lowerprioritized tasks
omplete before the gra
e period t, all tasks
an be exe
uted without preemption. Su
h a s
hedulingsituation is depi
ted in Fig 2 C. Task T1 is exe
uting withbasi
 priority P3 and a task T3 with priority P1 (high prioritypreemptive) is s
heduled at the end of the interrupt routine
E3. Task T3 has a gra
e period of t and thus, preemption isnot ne
essary to s
hedule the high priority task in time.The PL s
heduler requires memory for three separate sta
ksto store the pro
essing state of the three preemptive taskpriority levels (P1, P3, P5). As there are only three preemp-tive priorities only three sta
ks need to be allo
ated. Thenumber of required sta
ks is dependent on the number ofpreemptive priority levels and not on the number of tasksused. Due to the �xed number of sta
ks used, a
al
ulationof required sta
k sizes is simpli�ed. In pra
ti
e, the bulk ofall tasks will be run in the same sta
k as regular TinyOStasks are defaulted to the basi
 priority level P3.
4.2.2 Implementation SpecificsA
omponent spe
i�es a priority task by wiring a prioritytask interfa
e to the PL s
heduler
omponent and by im-plementing the interfa
e event runTask(). This pro
edure
onforms to the TinyOS Enhan
ement Proposal (TEP) 106on tasks and s
hedulers.An example of an implemented priority task
an be seenin Alg. 1. For a
omponent to use a priority task it mustimplement the PriorityTask interfa
e and spe
ify the taskpriority as one of the interfa
e parameters (Alg. 1, line 2).The interfa
e provides a postTask
ommand whi
h is thesame as the basi
 task syntax post [task name℄ (Alg. 1, line6) and the runTask event handler whi
h stores the task fun
-tionality (Alg. 1, line 9). The event handler is invoked bythe s
heduler when the task is s
heduled to be pro
essed.Ea
h task must then be wired up to one of the �ve parame-terized taskPriority interfa
es provided by the PL S
heduler(Alg. 2, link 2-6). The wiring pro
ess is somewhat simpli-�ed by the generi
 PriorityTask
omponent (Alg. 1, line 16),whi
h uses the interfa
e parameter information to determinethe task priority and uniquely wire ea
h task to the appro-priate s
heduler interfa
e.

Algorithm 2 Priority S
heduler Stru
ture1: Module PLS
heduler{2: provides interfa
e TaskPriority<HighPreempt>[id℄;3: provides interfa
e TaskPriority<HighNonPreempt>[id℄;4: provides interfa
e TaskBasi
[id℄;5: provides interfa
e TaskPriority<LowNonPreempt>[id℄;6: provides interfa
e TaskPriority<LowPreempt>[id℄;7: }The PL s
heduler, is an extension of the TinyOS 2.x FIFOs
heduler. Depending on the number of task priorities ofthe operating system, up to �ve di�erent task queues areinitialized. A bit �eld is initialized to keep tra
k of whi
htask priorities are either preempted or a
tively pro
essing.On re
eiving a posted task the s
heduler �rst ensures thatthe task has not already been posted (TinyOS TEP 106 re-quirement). Se
ond, the s
heduler
he
ks if the task will bedelayed by a lower priority task a
tively running. If preemp-tion is required, the s
heduler will perform a
ontext swit
hor set a gra
e period timer to delay the
ontext swit
h. Thegra
e period time t is a �xed global value for all tasks in the
urrent implementation.The
ontext swit
h requires that the
urrent registers aresaved to the
urrent sta
k and the sta
k pointer register isthen dire
ted to the next sta
k
ontext
ontaining the pre-empted queue s
heduler. The preempted queue s
hedulerexe
utes all tasks sequentially starting from the highest pri-ority task down as far as the priority of the preempted task.The s
heduler
an therefore pro
ess multiple high prioritytasks waiting on the preempted task to �nish requiring only2
ontext swit
hes to exe
ute a set of high priority tasks.When there are no more tasks enqueued waiting on the pre-empted task, the
ontext is swit
hed ba
k to the preemptedtask
ontext and the preempted task
an �nish exe
uting.The sta
k size of the required sta
ks is
urrently spe
i�edand allo
ated at
ompile time. To obtain a good estimateof the required sta
k size, a tool as proposed in [6℄
an beused.Unlike preemptive multi-threaded systems su
h as [5, 6℄thread blo
king pro
edures are not ne
essary. The PL s
hed-uler s
hedules and exe
utes all tasks a

ording to the event-based ar
hite
ture.
4.3 Race ConditionsThe PL s
heduler adheres to all the �nalized TinyOS 2.xTEP spe
i�
ations on TinyOS tasks and s
hedulers with oneex
eption: tasks are not guaranteed to exe
ute in a sequen-tial manner. Only tasks within the same priority are guar-anteed to exe
ute sequentially. A higher priority task
anpreempt a lower priority task and modify shared memory
reating a ra
e
ondition. Currently, the TinyOS nesC
om-piler is not designed to dete
t su
h ra
e
onditions. Thus,the programmer must be aware of these additional program-ming
ompli
ations introdu
ed in using a preemptive s
hed-uler.In TinyOS, the defa
to method to prevent ra
e
onditionsis to en
lose the ra
e
ondition sensitive
ode in an atomi
statement. The atomi
 statement prevents ra
e
onditionsby disabling hardware interrupts, whi
h are the only eventsthat
an
ause ra
e
onditions in the TinyOS
on
urren
ymodel. However, in the modi�ed TinyOS, ra
e
onditions
an also o

ur when a task preemption o

urs. To ensurethat the atomi
ity of atomi
 se
tions is preserved, the PL

S
heduler
he
ks that the a
tive task is not exe
uting atomi

ode before preempting.
5. EVALUATIONThe usability of the PL S
heduler to extend existing appli-
ation
ode to provide preemption is evaluated. In addition,the modi�ed TinyOS is
ompared with the existing solutionsTinyMOS [5℄ des
ribed in the related work se
tion.
5.1 Usability EvaluationTmote Sky nodes with a

2420 radio trans
eiver are usedfor the evaluation. To test the TinyOS modi�
ation a slightlymodi�ed version of the well known TinyOS 2.x RadioCount-ToLeds appli
ation is used. The appli
ation periodi
allybroad
asts a 3 bit message to other nodes every tblink =

250ms and displays any re
eived messages by toggling theLEDs. The RadioCountToLeds appli
ation uses the stan-dard TinyOS
ommuni
ations sta
k to send and re
eive mes-sages. After re
eiving a message, the

2420 radio sta
kposts a task re
eiveDone_task() to signal to higher level
omponents that a message has been re
eived. In addition,a timer is used to post a
omputationally expensive task ev-ery tcomp = 1000ms. This task requires 100ms to �nish onthe Tmote Sky node. This
omputational expensive task isnot part of the standard RadioCountToLeds appli
ation andis used to visualize the advantage of preemption features.
Standard TinyOS.In the standard TinyOS system, the
omputational expensive task blo
ks the task posted by the

2420 radio sta
k that �nally pro
esses in
oming messages.Therefore LEDs are toggled with a delay of 100ms if the
omputational expensive task was just s
heduled. Delayedtoggling of LEDs is obviously not a serious problem but thisdemonstrates problems in TinyOS driven sensor networks ifthey are to be used in time
riti
al appli
ation s
enarios.
Modified TinyOS.In the modi�ed TinyOS a low priority
P5 is assigned to the
omputationally expensive task. Thisis done by re-wiring this task to the
orre
t priority levelof the PL s
heduler. The rest of the appli
ation remainsunaltered. Now the
omputationally expensive task is pre-empted by the

2420 task posted after re
eiving a radiomessage as standard TinyOS tasks run in priority level P3.The LEDs now toggle state as in the original RadioCount-ToLeds appli
ation; the
omputationally expensive task isexe
uting in the ba
kground. Only a small modi�
ation isne
essary to a
hieve the desired appli
ation behavior.
5.2 Comparative EvaluationThe previously des
ribed RadioCountToLeds appli
ationwas implemented using the TinyMOS
on
ept. In the Tiny-MOS variation the
omputationally expensive task is imple-mented as a MANTIS thread running at a lower prioritythan the thread
arrying the TinyOS system. Thus, theresulting appli
ation has the same behavior as the systemusing the modi�ed TinyOS with the PL s
heduler.However, both solutions di�er in important aspe
ts. First,the
omputational expensive task has to be implemented us-ing MANTIS semanti
s. A programmer has to be familiarwith both TinyOS and MANTIS syntax to develop the ap-pli
ation. A seamless integration of preemption features inTinyOS is not a
hieved. Se
ond, the TinyMOS solution has

a signi�
antly higher pro
essing overhead as more
ontextswit
hes than in the presented PL s
heduler solution are re-quired. This additional overhead translates to an in
reasein energy
onsumption as less idle-time is available for sleepperiods. However, as shown in [3℄ this pro
essing overhead
an be redu
ed to a

eptable levels. Third, the TinyMOSsolution has a larger memory footprint. Adding the Tiny-MOS solution to the modi�ed RadioCountToLeds appli
a-tion in
reases the
ode size by 10926 byte, the RAM size by267 byte. Adding the PL s
heduler solution to the modi�edRadioCountToLeds appli
ation, in
reases the
ode size by864 byte and the RAM size by 30 byte. Spa
e ne
essary forsta
ks is not in
luded here for either solution. The presentedTinyOS modi�
ation has a signi�
antly smaller memory re-quirement than TinyMOS (92% less
ode size in
rease, 89%less RAM size in
rease).
6. CONCLUSIONAs it is shown in the paper, it is possible to add pre-emption to the TinyOS system without introdu
ing over-heads used in multi-threaded systems. The established eventdriven pro
essing
on
epts
an be retained while adding pre-emption through
ontext swit
hing. Established TinyOSprogramming
onventions
an be used promoting reuse ofexisting appli
ation
ode. Thus preemption features
an beintegrated seamlessly in existing TinyOS infrastru
tures.
7. REFERENCES[1℄ J. Hill, R. Szew
zyk, A. Woo, S. Hollar, D. Culler, andK. Pister, �System ar
hite
ture dire
tions for networkedsensors,� in ACM SIGOPS Operating Systems Review,vol. 34, pp. 93�104, De
ember 2000.[2℄ H. Abra
h, S. Bhatti, J. Carlson, H. Dai, J. Rose,A. Sheth, B. Shu
ker, and R. Han, �MANTIS: Systemsupport for multimodal networks of in-situ sensors,� in2nd ACM International Workshop on Wireless SensorNetworks and Appli
ations, pp. 50�59, September 2003.[3℄ C. Du�y, U. Roedig, J. Herbert, and C. J. Sreenan,�Improving the Energy E�
ien
y of the MANTISKernel,� in Pro
eedings of the 4th IEEE EuropeanWorkshop on Wireless Sensor Networks (EWSN2007),Delft, Netherlands, Jan. 2007.[4℄ J. Regehr, A. Reid, K. Webb, M. Parker, andJ. Lepreau, �Evolving real-time systems usinghierar
hi
al s
heduling and
on
urren
y analysis,� in24th IEEE Internation Real-Time Systems Symposium,pp. 25�36, De
ember 2003.[5℄ E. Trumpler and R. Han., �A systemati
 framework forevolving TinyOS,� in IEEE Workshop on EmbeddedNetworked Sensors, pp. 61�65, May 2006.[6℄ W. P. M
Cartney and N. Sridhar, �Abstra
tions forsafe
on
urrent programming in networked embeddedsystems,� in Pro
eedings of the 4th international
onferen
e on Embedded networked sensor system,pp. 167 � 180, O
tober 2006.[7℄ M. Rahimi, R. Baer, O. I. Iroezi, J. C. Gar
ia,J. Warrior, D. Estrin, and M. Srivastava., �Cy
lops: Insitu image sensing and interpretation in wireless sensornetworks,� in In pro
. 3rd international
onferen
e onEmbedded Networked Sensor Systems,, pp. 192�204,November 2005.

