An Experimental Comparison of Event Driven and Multi-Threa ded Sensor Node
Operating Systems

Cormac Duffy Utz Roedig*

Computer Science Department
University College Cork, Ireland
{c.duffyl|j.herbert|c.sreenan}@cs.ucc.ie

John Herbert Cormac Sreenan

*InfoLab21
Lancaster University, UK
u.roedig@lancaster.ac.uk

Abstract system is very suitable for sensor networks because few re-

sources are needed, resulting in an energy-efficient system

Two different operating system types are currently con-
sidered for sensor networks: event driven and multi-
threaded. This paper compares the two well-known oper-
ating systems TinyOS (event driven) and MANTIS (multi-
threaded) regarding their memory usage, power consump-
tion and processing capabilities. TinyOS and MANTIS are
both ported to the DSYS25 sensor platform. Both operat-
ing systems are used to execute the same sensor network
application and the aforementioned parameters of interest
are measured. The results presented in this paper show for
which set of applications each operating system is prefer-
able.

1. Introduction

[1]. However, the exact figures are unknown and therefore
this paper quantifies precisely the resource usage. Ités als
claimed that a multi-threaded operating system has com-
paratively better event processing capabilities in terfns o
meeting processing deadlines [2]. Again, an in-depth anal-
ysis is currently missing and is therefore conducted. For
the comparisons, the event-based sys®nyOS and the
multi-threaded systelANTIS both execute the same sen-
sor network applications on thBSYS?5 [3] sensor plat-
form. Memory requirements, energy consumption patterns
and the event processing capabilities of the two operating
systems are investigated in this paper. The results pegent
can be used to decide which type of operating system should
be used for a specific sensor network application. The re-
sults also show that for a number of application areas a
thread-based sensor network operating system is actually
feasible and even preferable.

Currently, operating systems for sensor nodes follow ei- Historically, there has been much debate on whether an
ther one of two different design concepdgent-driven and event-based or multi-threaded architecture is more efficie
multi-threaded. In event-driven systems every action an op- However, none of these discussions consider the sensor net-
erating system has to perform is triggered by an event (e.gwork domain which dictates very specific constraints. Ex-

a timer, an interrupt indicating new sensor readings or anisting work targets only a subset of aspects investigated in
incoming radio packet). The tasks associated with eachthis paper. For example papers analyzing or describing one
event are processed sequentially until the operatingsyste specific operating system (e.g. [1, 2, 4]), or publications
is idle and can be sent into an energy-efficient sleep statecomparing only one aspect (e.g. memory usage in [5]). As
As events are processed in order, expensive context switcheach single existing analysis is based on different assump-
ing between tasks is not necessary. An example of suchtions and experimental setups, it is not possible to extract
an operating system is TinyOS [1]. The second approachan objective comparison. For an objective comparison of
follows the multi-threaded operating system concept. The the operating systems, a complete study presented as in this
operating system multiplexes execution time between thepaper, is required. Due to space restrictions, existirjedl
different tasks, implemented as threads. While switching work is not discussed in more detail.
from one thread to another, the current context has to be The rest of the paper is organized as follows. Section 2
saved and the new context must be restored. This consumegives an overview of the operating systems TinyOS and
costly resources in the constrained sensor node. An examMANTIS. Section 3 describes the test application imple-
ple of such an operating system for sensor nodes is MAN-ment on our sensor nodes, for the comparative study. Sec-
TIS [2]. tion 5 presents the experimental comparison of the operat-
It is generally assumed that an event-driven operatinging systems. Section 7 concludes the paper.

Algorithm 1 TinyOS structure Algorithm 2 MANTIS structure

1: conponent _A 1: thread_A

2 task do(){...} 2: while(running)

3: command X(){...} 3: ...;ms_senmaphore_wait (Al);. ..
4 event Y(){...}

4: int_A
5: int_A 5: ...;nos_senaphore_post (Al); ...
6: L
7: post_task(A) 6: di spat ch_t hread()
7: PUSH THREAD STACK()
8: TOSH_run_task() 8: CURRENT_THREAD = readyQ get Thread()
9: whil e(TOSH_ run_next _task()) 9 CURRENT_THREAD. st at e=RUNNI NG
10: TOSH_ sl eep() 10: POP_THREAD STACK()
2. Sensor Node Operating Systems thread that the resource is now available and thread pro-

cessing is resumed. While a thread is waiting on a re-

In order to compare the event driven and multi-threaded source to become available, other threads might be acti-
operating system concepts, a well known and widely usedvated or, if no other processing is required, a power sav-

implementation of each is selected, nam&pyOS and ing mode is entered. Power saving is handled by a thread
MANTIS, called idle-task which is scheduled when no other threads

are active. Thread scheduling is performed within the ker-

TinyOS The operating system and specialized applica- nel fqnctiondispatch_thread shown in Alg. 2, line 6. This
tions are written in the programming language nesC and ardunction searches a data structure calfeadyQ for the
organized in self-contained components. A simplified view Nighest prioritized thread and activates it. When e

of this component structure is shown in Alg. 1. Components patch_thread function is called, the current active thread is
consist of interfaces in the form abmmand andevent ~ Suspended callinfUSH_THREAD_STACK (line 7) which

functions. Components are assembled together, connectSaVes CPU register information. The highest priority tdrea

ing interfaces used by components to interfaces providedIS then selected from theeadyQ (line 8) and its reg?ster
by others, forming a customized sensor application. The re-values are restored by tlROP_THREAD_STACK function

sulting component architecture facilitates event-based p (line 10). Before thedispatch_thread function is called,

cessing by implementing event-handlers and TinyOS tasks thereadyQ structure is updated. Threads that are currently

TinyOS tasks are deferred function calls and are placed in aS/€€Ping Or that are waiting on a semaphore (resource)

simple FIFO task-queue for execution (see Alg. 1, line g). &€ excluded from theeadyQ. The scheduling through the
TinyOS tasks are taken sequentially from the queue and aréliSpatch_thread function can be initiated by two different
run to completion. Once running, the TinyOS task can not Means. Dispatch_threadis called when a semaphore op-
be interrupted (preempted) by another TinyOS task. Event.eration is cglled (e.g. tollet the current threz?\d wait on a
handlers are triggered in response to a hardware interrupf€S0urce).Dispatch_threadis also called periodically by a
and are able to preempt the execution of a currently runningiMme Slice timer to ensure processing of all threads accord-
TinyOS task (see Alg. 1, line 5). Event-handlers perform N9 {0 their priority.
the minimum amount of processing to service the event.
Further non time-critical processing is performed within a 3. Evaluation Setup
TinyOS task that is created by the event handler. After all
TinyOS tasks in the task queue are executed, the TinyOS For the evaluation, TinyOS and MANTIS are ported to
system enters a sleep state to conserve energy (see Alg. he DSYS25 [3] platform and measurement facilities are in-
line 10) The Sleep state is terminated if an interrupt ogCcur tegrated in both operating Systems (see [6], for more de-
tailed information on the evaluation setup) . To actually
MANTIS Each task the operating system must support perform the comparative evaluation, an abstract apptinati
can be implemented - using standard C - as a separatescenario is defined. Depending on a sensor node’s role
MANTIS thread. A simplified view of this thread struc- within this scenario (leaf node vs. forwarding node) and
ture is shown in Alg. 2. A new thread is initialized and the configuration of the scenario itself (high sensing task
thread processing is started (line 1). Processing mightvs. small sensing task), a node is stressed differently. The
be halted using the functiomos semaphore wait when performance of a single node, exposed to the differentstres
a thread has to wait for a resource to become availablesituations is measured while using the two different operat
(line 3). An interrupt handler (line 4) using the function ing systems. In the following paragraphs, the abstract ap-
mos_semaphore_post (line 5) is used to signal the waiting plication scenario is motivated and described.

TinyOS 9 283
MANTIS 13.1 287

______________________ e n=3 oS Program Size (KB)| Required RAM (B)
S S : | | |
1

Figure 1. Binary Tree Table 1. Memory Usage

Application Scenario In many cases, a sensor network is andl, = 400000 clock cycles depending on the type of
used to collect periodically obtained measurement data at ssensing task under consideration (Which corresponds to
central point (sink or base-station) for further analy3ise 1ms/100ms on a4 M H z CPU).

sensor nodes in such a network execute two major tasks.

First a sensor nodes perform a sensing operation and secong affic Pattern Depending on the position of a node
the node must forward the gathered data hop-by-hop to thep, the tree, varying amounts of forwarding tasks have to
sink. The execution time of the sensing task will depend on o performed. It is assumed that no time synchronization
the nature of the physical phenomenon monitored and thegmong the sensors in the network exists. Thus, even if each
complexity of the algorithm used to analyze it. Therefore, sensor produces data with a fixed frequency, data forward-
the position of the node in such a network and the complex-jng tasks are not created at fixed points in time. The ar-
ity of the sensing task define the operating system load of jy 4] rate\,, of packets at a node at tree-leveis modeled
the sensor node. as a Poisson process. As the packet forwarding activity is
The complexity of the sensing operation depends on therelated to the sensing activity in the field, is given by:
phenomenon monitored, the sensor device used and the — (2n —1). f,. Itis assumed that the duration (com-
data preprocessing required. As a result, the operating sySpjexity) /,, of the packet-processing task/js= 4000 clock
tem can be stressed very differently. If, for example, an cycles.
ATMEGA128 CPU with a processing speed €8/ hz is
considered, a simple temperature sensing task processeg
through the Analog to Digital Converter can be performed
in less than a millisecond. If the same device is used in con-))
junction with a camera, image processing might take up to 1 he memory footprint of the operating system has to be
100ms [7] before a decision is made. Note that a long sens- S Small as possible. The more complex an application is
ing task can be split-up into several sub-tasks butin macti (With respect to memory requirements), the more likely a
this is not always possible[7]. more capaple Memory/CPU chip will be required to host
The complexity of a packet forwarding operation de- th€ application. ,
pends on the transceiver type, the MAC-layer and routing " Order to determine the memory usage of each oper-
protocols used. On the DSYS25 platform with a Nordic lng system, we use the GNU project binary utility avr-

transceiver approximatel000 clock cycles are necessary size. Ayr-size isa fl_ash image reader that .outputs the pro-
to read a packet from the transceiver, perform routing and9ra@m size and static memory (global variables) required

re-send the packet over the transceiver. The amount of?Y €ach operating system. However, the compilation pro-

packet forwarding tasks depends obviously on the node un-cedure for both operating systems is somewhat different.

der consideration and the current network topology. A specialized custom compiler (nesC) provided with the
TinyOS framework, exploits the component-based architec-

ture to include only components required by the applica-
Topology It is assumed that a binary tree topology is tion’s wiring schema in the compiled program image. Fur-
formed in the network (see Fig. 1). Depending on the po- thermore, the nesC compiler can deduce and remove any
sition n in the tree, a sensor node might process varying ynused component functions within the application. Thus,
amounts of packets. In the experiments, the behavior of a;q provide a fair memory comparison of both operating
single node at all possible positionss emulated and mea- systems, the MANTIS application and operating system is
sured by applying the sensing pattern and network traffic asstripped before compiling of all functionality that is not
described next. used for the abstract application .

. Memory Usage

Sensing Pattern A homogeneous activity in the sensor Results The results in Table 1 show that the MANTIS
field is assumed for the abstract application scenario. Eachoperating system take¥% extra programmable memory
sensor gathers data with a fixed frequerfgy Thus, ev- space compared to the TinyOS operating system. It has to
eryts = 1/fs a sensing task of the duratidn has to be be noted that both operating systems require addition&l flas
processed. The duratidp is variable betweeh, = 4000 memory to cater for the stack which is not shown in Table 1.

Furthermore, the MANTIS scheduler dynamically allocates 18

a memory pool to store the stack and processor registers for ;Eu:_ f I MMA?QE}SEEE.}11SEZ —
each thread. e Ll ManmseliTRoms
F MANTIS E,, [(=75ms ——
The results show that both operating systems have very 2 1o MANTISEl=100ms —
similar memory requirements. Thus, conventional micro- § e
processors combining CPU and memory can normally hold 23;, j
either of the investigated operating systems. g,
1 2 3 4 5 6 7 8
. Tree Position [n]
5. Event Processing a) MANTIS
18 -
It is assumed that the packet-processing task within the g 161 fyégsgflhéﬁs —
nodes has priority so that deadlines regarding packet for- B 1: E%Sgg; ;ggms -
warding can be met. Thus, in the MANTIS implementa- g’ A —
tion, the packet-processing task has a higher priority than § o
the sensing task. In the TinyOS implementation, no prior- ‘é j =TT S
itization is implemented as this feature is not provided by g,]
the operating system. . . s . .
To characterize processing performance of the operating Tree Position [n]
system, the average task execution tifieof the packet b) TinyOS

forwarding task, is measured. During the experimeht,
packet-processing times are recorded. To do so, the task
start timee.,+ and the task completion time,,,, are mea-
sured and the packet-processing time is recorded as

Figure 2. Average packet-processing time E;

estop — €start- 1he average task execution tinkg is cal- The thread prioritization capability of MANTIS is
culated at the end of the experiment &:= > ¢;/J. For clearly visible in the experimental results. Packet preces
each tree position, the experiment is run until = 25000 ing times are independent of the concurrently executed and
packet-processing events are recorded. lower priority sensing task. In TinyOS, sensing and packet

forwarding task delays are coupled, and the influence of the
sensing activity on the packet forwarding activity is clgar

Results In the experiment, the average task execution visible

time E, is determined for TinyOS and MANTIS support-
ing the abstract application scenario (see Fig. 2).]

Where MANTIS is used, it can be observed that the av- 6. Energy Consumption
erage packet-processing time is independent of the sensing
task execution time. Furthermorg; is also independent To evaluate power-efficiency, This study investigates the
from the positionn of the node in the tree. The average available idle time in which low-power operations can be
processing time increases slightly, under a heavy loads Thi scheduled. Thus the comparative effectiveness of specific
is due to the fact that under heavy load packet forwarding power management policies can be gauged on the amount
tasks have to be queued (see Fig. 2 a)). of potential low-power (idle) time available.

Where TinyOS is used, the average processing time for In the experiment, the abstract application scenario is ex-
the packet forwarding task; depends on the length of the ecuted by the sensor node running TinyOS or MANTIS.
sensingl, of the sensing task. In addition, under heavy The duration of the experimefit and the duratiori, of
load the queuing effects of the packet forwarding tasks alsoX idle time periods during the experiment is recorded.
contribute somewhat to the average processing time (seds defined as = isiop — isiart - All idle periodsiy are
Fig. 2 b)). summarized and the percentage idle tinig,the percent

The variance in the packet-processing titfig is also of experiment time, in which the processor is idle, which
recorded but not shown due to space restrictions. It has to bds calculated as followst; = (3 ix/T) - 100. Again, for
noted that this variance is significantly smaller in MANTIS €ach tree position, the experiment is run until = 25000
than in TinyOS (e.g. witm = 8 andi, = 75ms, thereisa Packet-processing events are recorded.
8.3ms variation of packet processing time in TinyOS com-
pared with &.4ms variation in MANTIS). Thus, MANTIS Results In the first experiment, the percentage idle time
is better able to support scenarios which require predietab 1, is determined for TinyOS and MANTIS supporting the
processing behavior. abstract application scenario. (see Fig. 3).

100 g ‘ pect. However, an interesting and not obvious fact is high-

? I S —— == lighted by the experiments. If t_he system_ is not I_oaded
> (leaf node withn = 1 and a sensing task with the size of
% o ls = 1ms) a difference of only0.1% in idle time is mea-
S ol M“:‘::}SISI :ti Iéag g \' sured (compared to a difference®9% under heavy load
g MANTIS 1 <225ms —e— 3 with n = 8 andl, = 100ms). Thus, MANTIS would be
g T Mavnsiiosme —— a good choice in cases where the sensor network is idle for
T s 4 5 6 7 s long periods and suddenly high activity is encountered that
Tree Position [n] requires timely processing of sensor information. Forehes
a) MANTIS kinds of applications, MANTIS combines both important
100 == sensor network design goals, i.e. energy efficiency and pre-
NSs s —— dictive behavior.
t . TN
£ References
s TinyOS Iy, l;=1ms —e—
& 60 TS iioms o
H ol Thoste ::;ggmg - [1] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
& ThyOS 1,5, STo0me —— K. Pister, “System architecture directions for networked
TR i & sensors,” iNACM SIGOPS Operating Systems Review,
b) TinyOS vol. 34, pp. 93-104, December 2000.
[2] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth,
Figure 3. Percentage idle time I, B. Shucker, C. Gruenwald, A. Torgenson, and R. Han,

“MANTIS OS: An embedded multithreaded operat-
ing system for wireless micro sensor platformn&CM
kluwer Mobile Networks & Applications Journal, spe-
cial Issue on Wireless Sensor Networks, August 2005.

The time spent in idle mode drops exponentially for both
operating systems with the increasing node position in the
tree described by the parameterThis behavior is expected
as the number of packet tasks increases accordingly. Les§3] A. Barroso, J. Benson, T. Murphy, U. Roedig,
obvious is the fact that the available idle time drops faster C. Sreenan, J. Barton, S. Bellis, B. O’Flynn, and
in MANTIS than in TinyOS. The fast drop in idle time is K. Delaney, “Demo abstract: The DSYS25 sensor plat-
caused by the context switches in the MANTIS operating form,” in 2"? international conference on Embedded
system. The more packet forwarding tasks are created, the networked sensor systems, pp. 314-314, November
more likely it is that a sensing task is currently running 2004.

when a packet interrupt occurs. Subsequently, a context[4] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a
switch to the higher prioritized forwarding task is needed. Iiéhtweight ’antil flexible (;peratin'g systém for tiny net-
It is clearly visible that TinyOS is more energy efficient worked sensors” i9" Annual |EEE International

than MANTIS; especially under a high system load. Conferenceon Local Computer Networks, pp. 455—462,
November 2004.

[5] C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivas-
tava, “A dynamic operating system for sensor nodes,” in
374 International Conference on Mobile Systems, Ap-
plications, and Services, pp. 117-124, June 2005.

7. Conclusion

Both operating systems fit on standard microprocessors
combining CPU and memory. However MANTIS uses
30% more space, but both systems are well within rea-
sonable bounds for today’s microprocessors. The experi-[6] C. Duffy, U. Roedig, J. Herbert, and C. Sreenan, “A
mental results show that MANTIS is more predictable than performance analysis of TinyOS and MANTIS,” Tech.
TinyOS. Specifically, the packet forwarding task execution Rep. CS-2006-27-11, University College Cork, Ireland,
time in MANTIS has a low variation and is independent November 2006.
of other activity such as the sensing task. Thus, MANTIS
would be preferable in situations that need deterministit a [7]
timely processing. However, as the experiments show, the
MANTIS system is not as power-efficient as TinyOS. Thus,
TinyOS would seem preferable if energy consumption is
deemed to be of primary importance.

In general, the experiments confirm what one would ex-

M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior,
D. Estrin, and M. Srivastava, “Cyclops: In situ image
sensing and interpretation in wireless sensor networks,”
in In proc. 3"¢ international conference on Embedded
Networked Sensor Systems,, pp. 192—204, November
2005.

