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Abstract. Event-driven operating systems such as TinyOS are the pre-
ferred choice for wireless sensor networks. Alternative designs following
a classical multi-threaded approach are also available. A popular im-
plementation of such a multi-threaded sensor network operating system
is MANTIS. The event-based TinyOS is more energy efficient than the
multi-threaded MANTIS system. However, MANTIS is more capable
than TinyOS of supporting time critical tasks as task preemption is sup-
ported. Thus, timeliness can be traded for energy efficiency by choosing
the appropriate operating system. In this paper we present a MANTIS
kernel modification that enables MANTIS to be as power-efficient as
TinyOS. Results from an experimental analysis demonstrate that the
modified MANTIS can be used to fit both sensor network design goals of
energy efficiency and timeliness.

1 Introduction

Sensor nodes must be designed to be energy efficient in order to allow long peri-
ods of unattended network operation. However, energy efficiency is not the only
design goal in a sensor network. For example, timely processing and reporting
of sensing information is often required as well. This might be needed to guar-
antee a maximum delivery time of sensing information from a sensor, through
a multi-hop network, to a base-station. To be able to give such assurances, net-
work components with a deterministic behavior will be required. The operating
system running on sensor nodes is one such component.

Event-based operating systems are considered to be the best choice for build-
ing energy efficient sensor networks as they require little memory and processing
resources. Hence, the event-based TinyOS [1] is currently the preferred operating
system for sensor networks. Event-based operating systems are not very useful
in situations where tasks have strict processing deadlines. Tasks are processed
sequentially, a prioritization of important tasks to meet processing deadlines
is not possible. Multi-threaded operating systems are more suitable if such re-
quirements must be fulfilled. Thread preemption and context switching enables
such systems to prioritize tasks and meet deadlines. The MANTIS [2] operating
system is the first multi-threaded operating system designed specifically for wire-
less sensor networks. Unfortunately, MANTIS has a relatively high processing



overhead for thread management. This processing overhead is directly related to
reduced energy efficiency because of the relative increase in CPU activity.

This creates the dilemma that both design goals - energy efficiency and time-
liness - can only currently be optimized independently. One is forced to choose
which goal is of higher importance in the considered application scenario. There-
fore, it would be good if the dilemma could be resolved by either making TinyOS
more responsive or MANTIS more energy efficient. In this paper the later prob-
lem is solved: We present a MANTIS kernel modification to increase power effi-
ciency. As the results show, MANTIS can be modified to be as power-efficient as
TinyOS without impacting vital kernel functionality. Thus, the modified MAN-
TIS can be used to solve both important sensor network design goals.

The next Section of the paper presents related work. Section 3 presets pre-
liminary research comparing TinyOS and MANTIS regarding event processing
capabilities and energy consumption. This comparison motivates the modifica-
tions of the MANTIS kernel for better energy efficiency. Section 4 explains in
detail the MANTIS kernel. Section 5 presents and explains the MANTIS kernel
modifications. Section 6 shows an evaluation of the modified kernel. Section 7
concludes the paper.

2 Related Work

Problems arise when a sensor network applications require to be energy efficient
and have to provide timely processing capabilities at the same time.

One example of an operating system that tries to bridge the gap is Contiki
[3]. Contiki is an event-based sensor network operating system that includes a
threaded library that can be optionally compiled to facilitate multi-threaded
applications. Thus multi-threaded capabilities can be selectively designated to
specific processes, without the processing and memory overhead in all parts of
the system.

A similar approach can be seen in [4,5]. In both works the TinyOS operating
system is encapsulated in a multi-threaded kernel. The operating system is then
scheduled as a thread such that it can be preempted by complex threads if
required. Thus TinyOS still achieves preemption without sacrificing the light-
weight scheduling characteristics. In summary, the research focus of [3,4,5] is to
minimize the processing overhead of a multi-threaded system, by isolating only
the processes that require multi-threaded capabilities. However no effort is made
to reduce the overhead of the multi-threaded processes.

In [6] a programming concept called “proto-threads” is described which al-
lows the programmer to develop a program using a multi-threaded program-
ming syntax. It is argued that an event-based system is more power-efficient
but that programming concurrent (sensor network) applications with threads,
as opposed to event handlers, is easier for the programmer. Proto-threads are,
however, merely a thread abstraction. They do not provide thread preemption,
thus complex processes cannot easily be multiplexed with high priority tasks
without introducing blocking.



The research listed above tries to compromise between power-efficient event-
based schedulers and multi-threaded schedulers. The work presented in this pa-
per focus on the reduction of processing overheads in multi threaded sensor
network operating systems.

3 Preliminary Research

The preliminary research investigates the differences of the multi-threaded MAN-
TIS [2] and the event-based TinyOS [1] operating systems. More details on the
preliminary research can be found in [7]. The experimental methodology is re-
used for the evaluation of the optimized MANTIS presented in Section 6.

3.1 Evaluation Goals

It is generally assumed that an event-driven operating system is very suitable for
sensor networks because few resources are needed, resulting in an energy-efficient
system. However, the exact figures are unknown and therefore quantified in this
preliminary research. On the other hand it is claimed that a multi-threaded
operating system has good event processing capabilities in terms of meeting
processing deadlines. Again, an in-depth analysis is currently missing and is
therefore conducted. For comparison purposes, the event-based system TinyOS
and the multi-threaded system MANTIS executing the same sensor network
applications on the [8] are investigated.

The following parameters - while the sensor node is executing a generic ap-
plication - are evaluated:

1. Event Processing: The average task execution time F; of a particular re-
occurring sensor task is measured. Average task execution time and its vari-
ance are a measure for the event handling capabilities of the system.

2. Energy Consumption: The percentage of experiment time I; spent with an
idle CPU is measured. CPU idle time can be used to suspend the CPU and
thus relates directly to the energy efficiency of a system.

An application scenario for the evaluation has to be defined, as the parameters
of interest are influenced significantly by the scenario. It was decided to use
a scenario of a generic nature so that the results are applicable to a range of
real-world applications.

3.2 Evaluation Setup

In many cases, a sensor network is used to collect periodically obtained mea-
surement data at a central point (sink or base-station) for further analysis. The
sensor nodes in such a network execute two major tasks. Sensor nodes perform
the sensing task and they are used to forward the gathered data to the sink. If
the sink is not in direct radio range of a node, other nodes closer to the sink



are used to forward data. The execution time of the sensing task will depend
on the nature of the physical phenomenon monitored and the complexity of the
algorithm used to analyze it. Therefore, the position of the node in such a net-
work and the complexity of the sensing task define the operating system load of
the sensor node. The complexity of the sensing task is varied in the experiments
and hence the application scenario is considered abstract, as it can be compared
with many different real-world deployment scenarios.

The complexity of the sensing operation depends on the phenomenon moni-
tored, the sensor device used and the data pre-processing required. As a result,
the operating system can be stressed very differently. If, for example, an AT-
MEGA128 CPU with a processing speed of 4Mhz is considered (a currently
popular choice for sensor nodes), a simple temperature sensing task processed
through the Analogue to Digital Converter can be performed in less than 1ms
[9]. In this case only a 16bit value has to be transferred from the sensing device
to the CPU. If the same device is used in conjunction with a camera, image
processing might take some time before a decision is made. Depending on cam-
era resolution and image processing performed, a sensing task can easily take
more than 100ms [10]. Other application examples documented in the litera-
ture are situated in between these values. Note that a long sensing task can be
split-up into several sub-tasks but in practice this is not always possible. The
experimental evaluation spans the task sizes described (1ms...100ms).

The following paragraphs give an exact specification of the abstract applica-
tion scenario used, which is defined by its topology, traffic pattern and sensing
pattern. The application scenario is then implemented using TinyOS and MAN-
TIS on the DSYS25[8] sensor platform for evaluation.

Topology The sensor network is used to forward sensor data towards a single
base-station in the network. It is assumed that a binary tree topology is formed
in the network (see Fig. 1). Depending on the position n in the tree, a sensor
node might process varying amounts of packets. Nodes closer to the root are more
involved in packet forwarding as these nodes have to multiplex packet forwarding
operations with their sensing operations. In the experiments, the behaviour of
a single node at all possible positions n is emulated and measured by applying
the sensing pattern and network traffic as described next.

Fig. 1. Binary Tree

Sensing Pattern A homogeneous activity in the sensor field is assumed for the
abstract application scenario. Each sensor gathers data with a fixed frequency



fs. Thus, every t; = 1/ f, a sensing task of the duration [, has to be processed.
As mentioned, the duration I, is variable between I, = 4000 and I, = 400000
clock cycles depending on the type of sensing task under consideration (Which
corresponds to 1ms/100ms on a 4M Hz CPU).

Traffic Pattern Depending on the position n of a node in the tree, varying
amounts of forwarding tasks have to be performed. It is assumed that no time
synchronization among the sensors in the network exists. Thus, even if each sen-
sor produces data with a fixed frequency, data forwarding tasks are not created
at fixed points in time. The arrival rate A\, of packets at a node at tree-level n
is modeled as a Poisson process. As the packet forwarding activity is related to
the sensing activity in the field, \,, is given by:

An=(2"=1)-fs (1)

This equation is a simplification; queuing effects and losses are neglected,
but nevertheless provides a good method to scale the processing performance
requirements of a sensor network application. It is assumed that the duration
(complexity) I, of the packet-processing task, is I, = 4000 clock cycles. This is
the effort necessary to read a packet from the transceiver, perform routing and
re-send the packet over the transceiver. This is a common processing time and
was obtained analyzing the DSYS25 sensor nodes using the Nordic radio [11].

3.3 Event Processing

It is assumed that the packet-processing task within the nodes has priority so
that deadlines regarding packet forwarding can be met. Thus, in the MANTIS
implementation, the packet-processing task has a higher priority than the sensing
task. In the TinyOS implementation, no prioritization is implemented as this
feature is not provided by the operating system.

Task Execution Time To characterize processing performance of the operat-
ing system, the average task execution time E; of the packet forwarding task, is
measured. During the experiment, J packet-processing times e; are recorded. To
do so, the task start time egq,+ and the task completion time e, are measured
and the packet-processing time is recorded as e = estop — €start. The average task
execution time E; is calculated at the end of the experiment as: E; = ) e;/J.
For each tree position n, the experiment is run until J = 25000 packet-processing
events are recorded.

Results In the experiment, the average task execution time Ej is determined for
TinyOS and MANTIS supporting the abstract application scenario (see Fig. 2).

Where MANTIS is wused, it can be observed that the average
packet-processing time is independent of the sensing task execution time.
Furthermore, FE; is also independent from the position n of the node in the
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Fig. 2. Average packet-processing time FE .

tree. The average processing time increases slightly, under a heavy load. This is
due to the fact that under heavy load packet forwarding tasks have to be
queued (see Fig. 2 a)).

Where TinyOS is used, the average processing time for the packet forwarding
task F; depends on the length of the sensing [ of the sensing task. In addition,
under heavy load the queuing effects of the packet forwarding tasks also con-
tribute somewhat to the average processing time (see Fig. 2 b)).

The variance in the packet-processing time F; is also recorded but is not
shown due to space restrictions. However, it has to be noted that this variance
is significantly smaller in MANTIS than in TinyOS (see [7] for details). Thus,
MANTIS is better able to support scenarios which require predictable processing
behaviour.

The thread prioritization capability of MANTIS is clearly visible in the ex-
perimental results. Packet processing times are independent of the concurrently
executed and lower priority sensing task. In TinyOS, sensing and packet for-
warding task delays are coupled, and the influence of the sensing activity on the
packet forwarding activity is clearly visible.

3.4 Energy Consumption

To evaluate power-efficiency, This study investigates the available idle time in
which low-power operations can be scheduled. Thus the comparative effectiveness
of specific power management policies can be guaged on the amount of potential
low-power (idle) time available.

Idle time In the experiment, the abstract application scenario is executed by
the sensor node running TinyOS or MANTIS. The duration of the experiment
T and the duration iy of K idle time periods during the experiment is recorded.
i is defined as i = %540p — istart - All idle periods i; are summarized and the
percentage idle time, I, the percent of experiment time, in which the processor
is idle, which is calculated as follows: I; = (3 ix/T) - 100. Again, for each tree



position n, the experiment is run until J = 25000 packet-processing events are
recorded.

Results In the first experiment, the percentage idle time I; is determined for
TinyOS and MANTIS supporting the abstract application scenario. (see Fig. 3).
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Fig. 3. Percentage idle time I; for both operating systems.

The time spent in idle mode drops for both operating systems exponentially
with the increasing node position in the tree described by the parameter n. This
behavior is expected as the number of packet tasks increases accordingly. Less
obvious is the fact that the available idle time drops faster in MANTIS than
in TinyOS. The fast drop in idle time is caused by the context switches in the
MANTIS operating system. The more packet forwarding tasks are created, the
more likely it is that a sensing task is currently running when a packet interrupt
occurs. Subsequently, a context switch to the higher prioritized forwarding task
is needed.

3.5 Findings

The experimental results show that MANTIS has a much more predictive be-
havior executing the packet-processing task than TinyOS. More precise, the
execution time in MANTIS has a low variation and is independent of other ac-
tivity such as the sensing task. Thus, MANTIS would be preferable in situations
that need deterministic and timely processing. However, the MANTIS system is
not as power-efficient as TinyOS. Thus, TinyOS would seem preferable if energy
consumption is deemed to be of primary importance. If the system is not loaded
(leaf node with n = 1 and a sensing task with the size of Iy = 1ms) a difference
of only 0.1% in idle time is measured. However, if the system is under a heavy
load (leaf node with n = 8 and a sensing task with the size of [y = 100ms) a 6.9%
difference in the idle time is encountered. The biggest difference is measured for
n = 8 with a task size of [, = 1ms which results in a difference of 7.6%.



Algorithm 1 Thread structure

1: mos_thread_new(thread_A,128, PRIORITY_HIGH)
) 1:dispatch_thread()
2: thread A 2: PUSH_THREAD_STACK()
3:  while(running) 3: CURRENT_THREAD = readyQ.getThread()
4: . 4: CURRENT_THREAD.state=RUNNING
2: mos_semaphore_wait (A1) 5: POP_THREAD_STACK()
7: int_A
8: e
9: mos_semaphore_post (A1)
10:

part A part B

4 The MANTIS Kernel Architecture

The threaded MANTIS architecture implements thread-preemption, allowing the
operating system to interrupt any active thread to immediately begin processing
a thread of higher priority. As a result, the operating system can respond faster to
critical events. In general, the system architecture follows the design principles of
classical multi-threaded operating systems. However, to facilitate the necessary
power management requirements, energy saving mechanisms are integrated in
the thread scheduling. The processing states (e.g. sleeping, waiting) of all threads
are monitored and used to decide which power saving modes of the CPU should
be activated. Power saving is activated through a so-called idle task which is
special purpose thread with the lowest possible thread priority, that is scheduled
when all other threads are inactive.

4.1 Overview

Each task the operating system must support can be implemented as a
separate MANTIS thread. A simplified view of this thread structure is shown
in Alg. 1, part A. A new thread is initialized via the function mos_ thread_new
(line 1). Subsequently the thread processing, often implemented as an
infinite loop, is started (line 3). Processing might be halted using the
function mos_semaphore_wait when a thread has to wait for a resource to
become available (line 5). An interrupt handler (line 7) using the function
mos_ semaphore_post (line 9) is used to signal the waiting thread that the
resource is now available and thread processing is resumed. While a thread is
waiting on a resource to become available, other threads might be activated or
if no other processing is required, a power saving mode is entered.

As an example, a thread might be used to process incoming packets from a
transceiver chip. In this case, the mos_ semaphore _wait is used to suspend the
thread until a new packet arrives at the transceiver. If the transceiver receives a
packet, an interrupt is executed and the thread is resumed to read the currently
available packet and process it.



4.2 Scheduling

Thread scheduling is performed within the kernel function dispatch thread
shown in Alg. 1, part B. This function searches a data structure called ready@
for the highest prioritized thread and activates it. The ready@ is an array of
linked lists containing pointers to the currently active threads. Each index of
the array corresponds to a thread priority level.

When the dispatch_thread function is called, the current active thread is
suspended calling PUSH THREAD STACK (line 2). Thus, the current CPU
register information is saved to the heap memory allocated to the current thread.
The highest priority thread is then selected from the ready@ (line 3) and its
register values are restored by the POP_ THREAD STACK function (line 5).
The thread can then resume processing at the exact point it was previously
suspended.

Before the dispatch_thread function is called, the ready@) structure is up-
dated. Threads that are currently sleeping or that are waiting on a semaphore are
excluded from the ready@. The scheduling through the dispatch_thread function
can be initiated by two different means: initiation within a semaphore operation
or initiation through a time slice timer event.

Semaphore A thread uses the function mos_semaphore_wait to coordinate
access to a shared resource. If the resource is not ready, processing is suspended
until the resource associated with the semaphore becomes available (Alg. 2, part
A). If the resource is not immediately available (, line 3), the current thread
is suspended and a context switch using the previously explained function dis-
patch_ thread is performed (line 7). Before the context switch is performed, the
function update_ sleep_ counters is executed (line 6). This function is used to
check if currently sleeping threads have to wake up and join the ready@ struc-
ture. In the MANTIS operating system, the user has the ability to make a
thread sleep for a period of time. Thus, suspended threads either wait on a
semaphore or they sleep. Pointers to the sleeping threads are stored in a sorted
list, the sleep@. Sleeping threads are sorted according to their wakeup time,
such that the earliest thread to wake-up will be at the head of the queue. The
function update_sleep counters updates the wakeup times and if threads in
the sleep@ are due, they are moved to the ready@. Within an interrupt routine,
mos_ semaphore_ post is called to inform a waiting thread that a resource is now
available for processing (Alg. 2, part B). If a thread is waiting for the resource
(line 3), the thread is activated and added to the ready@ structure. Thereafter,
the update_ sleep counters function is called to check if sleeping threads have
to be activated as well. Finally, the thread waiting for the semaphore (or a
higher prioritized thread that was moved from the sleep@) is activated using
dispatch_ thread.

Time Slice Timer A timer is set to create an interrupt every 20ms (Alg. 3).
This interrupt serves two purposes. First, the interrupt acts as a time slice for



Algorithm 2 Semaphore

1: mos_semaphore_wait (Semaphore s) 1: mos_semaphore_post(Semaphore s)

2 s.val-- 2: s.val++

3 if (s.val<0) 3: if (s.getThread()!=NULL)

4: s.addThread (CURRENT_THREAD) 4: s.getThread() .state=RUNNING

5: CURRENT_THREAD.state=BLOCKED 5: readyQ.addThread(s.getThread())
6 update_sleep_counters() 6: update_sleep_counters()

7 dispatch_thread() 7: dispatch_thread()

part A part B

Algorithm 3 Timer Interrupt
1: t_slice_int()

2: readyQ.addThread (CURRENT_THREAD)
3: update_sleep_counters()

4: dispatch_thread()

the Round Robin scheduler, in which lengthly tasks are interrupted to give other
equal priority threads a processing time-slice, thus preventing process starvation.
Second, the periodic interrupts are used to check if threads in the sleep(@ have to
wake-up. The update_sleep counters function is called from the timer interrupt
to reactivate and reschedule sleeping threads. Obviously, threads sent to sleep
using this mechanism do not expect to sleep with a period less than the periodic
interrupt, 20ms. Finally, dispatch_ thread is called to perform the context switch
to the new thread. In many application cases, the new thread will be the same
as the old thread.

4.3 Power Management

In MANTIS, thread state information is used to determine the level of power
management to be initiated. Sensor network processors have a number of differ-
ent low-power modes, providing a range of energy conserving states, varying in
power-conserving performance and wake-up responsiveness.

Thread state information is used in MANTIS to determine if a thread requires
a responsive wake-up, or if more relaxed wake-up times can be accepted. If the
thread is BLOCKED (Alg. 2, part A:line 3), it is assumed that fast wake-up
times are required and an idle power mode with fast wake-up response time is
chosen. If all threads reside in a SLEEPING state, then the thread sleep counters
are used to determine the next wakeup period. A timer is set to wakeup the
processor in time for the next thread event. Thus the processor can be put into
a deep sleep power mode and wakeup early enough to compensate for the slow
processor wake-up period.

Power management in the MANTIS kernel is implemented as a separate
thread, the idle thread. The idle thread is assigned the lowest priority and is
always in a ready state. Thus, if no threads are ready to be processed the idle
thread by default will be the next thread to be activated and the processor will
be transitioned into a low power state determined as previously explained.



Algorithm 4 Modified semaphore functions

1: mos_semaphore_wait (Semaphore s) 1: mos_semaphore_post(Semaphore s)
2 s.val-- 2: s.val++
3 if (s.val<0) 3: if (s.thread.state==BLOCKED)
4 if(readyQ.getThread!=NULL) 4: s.getThread() .state=RUNNING
5: if (CURRENT_THREAD.state==BLOCKED_RUNNING) 5: ready(Q.addThread(s.getThread())
6: CURRENT_THREAD.state==BLOCKED 6: #ifdef MANTIS_SLEEP
7 s.addThread (CURRENT_THREAD) 7: update_sleep_counters()
8 #ifdef MANTIS_SLEEP 8: dispatch_thread()
9: update_sleep_counters() 9: else
10: dispatch_thread() 10: s.getThread() .state=RUNNING
11: else
12: CURRENT_THREAD.state=BLOCKED_RUNNING
13: do_power_management ()

part A part B

5 MANTIS Kernel Modifications

Asg shown in the preliminary research, MANTIS has the capability of task pre-
emption and thus critical high priority tasks can be executed deterministically.
However, the power consumption of a node running MANTIS is considerably
higher than the power consumption of a node running TinyOS. The high energy
consumption of the MANTIS operating system is caused by the processing over-
head for thread management. This relatively high overhead is mainly caused by
the (i) idle thread, the (ii) time slicing and the inefficient use of the (iii) kernel
queuing structures.

5.1 Idle Thread

As previously explained, power management is implemented in MANTIS within
the idle thread. If no other thread is currently active, the idle thread is dispatched
which subsequently initiates the appropriate power-saving state. This method of
power management is elegant as all power management code is contained in a
thread but it is also highly inefficient.

When all threads are inactive (SLEEPING or BLOCKED), a context switch
to the idle-thread is performed. Thereafter, as soon as one thread resumes ac-
tivity, another context switch is required. The new active thread might even be
the same thread that was active before the idle thread was called. Thus, for each
sleep activity two context switches have to be performed which are in most cases
not necessary on a typical sensor node running a single application.

To reduce the problem, the idle thread concept can be abandoned and threads
initiate a sleep state directly. Thus, the kernel thread handling overhead can be
greatly reduced, especially in scenarios where the same thread has to be activated
after a sleep phase, avoiding context switching.

In the modified MANTIS kernel, the power-management procedure that was
implemented as a thread is now implemented as a separate function that is
invoked directly by the kernel when no more threads are available to process.
The optimization requires a modification of the idle loop function. In the original



MANTIS kernel the idle loop is initially invoked by the kernel init function to
execute for the duration of operating system operation as a separate thread.
In the modified MANTIS kernel, the idle loop is no longer encapsulated as a
thread, but instead directly invoked from the kernel blocking procedures, i.e.
mos_ semaphore_sleep and mos_semaphore_wait (see Alg. 4). A new thread
state is added to the kernel, the BLOCKED RUNNING state is used to signify
if a thread can be reactivated after power management without a thread switch.
A thread is first transitioned to this state when waiting for a semaphore while no
other thread is active (Alg. 4, part A:line 12). Thereafter, the power management
function is involved (line 13). If the processor is later reactivated and a resource
is then ready, the mos_ semaphore_post function will be called and the condition
at Alg. 4 part B:line 3 will be used to determine if the blocked thread was already
running before the power-management was invoked. If this is the case, all thread
registers values still reside in the processor registers and a context switch is not
necessary. Instead, the thread state is changed to RUNNING, and the thread
resumes processing.

5.2 Time Slice Timer

As mentioned, MANTIS creates a time slice interrupt every 20ms to alternately
process threads of equal priority and addtionally update the sleep (.

The periodic execution of the interrupt routine, and especially the necessary
updates to determine which threads from the sleep@ have to be woken, repre-
sents a significant thread management overhead. Additionally, the sleep@ is also
checked with each semaphore operation.

Round robin execution of equal priority threads is not really required in a
sensor node. Either, one thread can wait for the other to finish execution or,
if starvation is a concern, another priority level can be assigned to the thread.
The sleep function using the sleep@ can be implemented alternatively using a
timer interrupt combined with a semaphore. Therefore, the time slice timer can
be removed from the MANTIS kernel without losing vital kernel functionality.

In the modified MANTIS kernel, the time slicing functionality and the associ-
ated sleep function using the sleep( are removed. More specificly, this function-
ality is moved to a separate library that can be included in the kernel if needed.
Applications can decide not to include the time slice timer and the associated
sleep functionality in favor of more efficient processing. Such applications can
therefor not invoke the mos_ thread_ sleep function to block a thread and must
instead call a semaphore and a timer to block a thread for a predefined period of
time. Equally prioritized threads in such applications execute sequentially until
completion instead of being processed in a round-robin fashion.

To include the default MANTIS time slice timer, the user need only specify
#define MANTIS SLEEP in the application code. The MANTIS SLEEP en-
vironment variable is used at part A:lines 8 and part B:6 in Alg. 4 to determine if
the thread sleep functionality is required and the thread sleep counters must be
updated with the update_sleep counters function. Additionally, the time slice
timer is set active.



5.3 The Kenel Queues

The MANTIS kernel maintains 3 types of link-list quing structures. The readyQ,
sleepQ and semaphore queue are used to store threads in a READY, SLEEPING
or BLOCKED state respectivly. A thread cannot reside in more than one queue
at a time, and will therefore frequently switch between the queues as it changes
state. As MANTIS normally handles a small number of threads (12 is the default
number of threads supported [12]) simple data structures and ways of using them
can be implemented. For example, all thread pointers can be kept in a simple
array of pointers ordered by thread priority. Thread priority’s and the number
of threads normally do not change while an application is running and thus, the
structure can be kept fairly static. Refrencing threads with static arrays requires
far less processing that using a link-list.

In the modified MANTIS kernel all linked list structures are removed from
kernel methods. The ready@ is changed from being an array of linked lists to a
simple array of thread pointers. The thread pointers are kept permanently in the
array while the threads exist. The thread pointers stored in this array are sorted
regarding thread priority. Thus, addition and deletion of threads is costly but
should not be common during a node’s operation as threads are normally created
at system startup. This change simplifies operations on the ready( structure
when semaphore functions are called. Threads need not switch between queues,
a simple change of the thread state variable is all that is needed for a thread to
switch state. The function readyQ.getThread (Alg. 4, part A:line 4) returns the
first thread pointer in the ready@ array where the thread is in state READY.

If a thread is suspended and waits for a semaphore, the thread pointer is
added to the semaphore structure. However, a copy of the thread pointer remains
in the ready(). The semaphore structure is also modified to point directly to
a single thread rather than a link-list of multiple threads. Thus, the function
s.addThread (Alg. 4, part B:line 5) is reduced to a simple pointer copy operation.
The flexibility of using a semaphore to block multiple threads is obviously traded
for efficiency.

6 Experimental Evaluation

The MANTIS kernel modifications are evaluated using exactly the same setup
that was used in the preliminary research. Again, the average task execution time
FE; and the percentage of experiment time [I; spent with an idle CPU are mea-
sured. According to the goals of the kernel modifications, the event processing
capabilities of MANTIS should not be shortened and the energy consumption
should be improved due to a reduction of processing overhead.

6.1 Event Processing

Fig. 4 shows the measured average packet-processing time F; of the original and
the modified MANTIS kernel for sensing tasks of two different sizes.



The results show that the average processing time of the packet forwarding
task is reduced significantly. This decrease is due to the reduced processing over-
head of the modified MANTIS kernel. The processing time is measured from the
point the packet arrives to the time the packet is processed which includes possi-
ble context switching time (see Section 3.3). The pure packet-processing within
the packet-processing thread accounts for 1ms. Thus, the operating system can
not execute the packet forwarding faster than 1ms.

The trend in the packet-processing time is due to the fact that the packet-
processing might sometimes preempt an active sensing task. Additionally, packet
queuing effects become more dominant with increasing network load (an increas-
ing n).

It can be deduced from the measurements that no significant difference in the
variance of packet-processing timesbetween the orignial and modified MANTIS
kernel(same magnitude of variation in the execution times). Additionally the
processing speed is increased as the number of kernel overheads are reduced.
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Fig. 4. Average packet-processing time FE;.

6.2 Energy Consumption

The percentage idle time is compared with the theoretical maximal possible
percentage idle time, IT"*. I;"** is calculated by taking only the application
processing of the abstract application scenario into account (see.Section 3.2).
Thus, I]'*" represents the percentage running time that the processor would
be idle using an ideal operating system which would have no operating system
processing overhead. I;*** depends on the task durations I, and [, of sensing
and packet forwarding task respectively, the frequency of the sensing task fs,
the CPU speed s, and the position n of the node in the abstract application
scenario. I;"** is calculated using Equation (1):

[ _ (1 S - 1))) -100 (2)

Scpu



Fig. 5 shows the measured average idle time I; of the original and the mod-
ified MANTIS kernel for sensing tasks of two different sizes. Additionally, the
maximum possible idle time I;*** is shown in the graph.

The results show that the available idle time is now very close to the the-
oretical maximum. The difference is especially visible under high network load
(high n). The modified MANTIS kernel reduces overheads in context switches
which is valuable in cases of a high system load.

Compared with the original MANTIS, the kernel modifications improve the
idle time (by 8% for n = 8 with Iy = 100ms). Compared with the TinyOS
operating system, the optimized MANTIS is now even outperforming TinyOS
in some cases. For example for [, = 100ms, n = 8, the modified MANTIS is 1%
better than TinyOS. If [, = 1ms, n = 8, the modified MANTIS is 0.3% worse
than TinyOS under a heavy load.
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Fig. 5. Percentage idle time I;.

7 Conclusion

As it is shown in the paper, it is possible to make a multi-threaded sensor
network operating system as power-efficient as an event-based system. Thus, the
commonly accepted fact that multi threaded systems are not useful for sensor
networks due to their heigh energy consumption is invalid. Especially in scenarios
that require timely event processing, multi threaded systems can be considered
a useful option.

The MANTIS kernel modifications reduce the processing overhead needed
for thread management dramatically. This overhead is reduced to such an ex-
tent that in usual sensor network application scenarios MANTIS has a similar
overall performance to TinyOS. As kernel overhead is directly related to energy
efficiency, the energy consumption of a MANTIS node is now similar to that
of a TinyOS node. After the kernel modifications, MANTIS is 1% more energy
efficient than TinyOS (in case of heavy load with n = 8, Iy = 100ms). With the



original MANTIS kernel, TinyOS is 6.9% better than MANTIS (in case of heavy
load with n = 8, I; = 100ms).

We conclude that multi threaded systems can be used in sensor networks if

designed carefully.
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