
Improving the Energy E�
ien
y of theMANTIS KernelCorma
 Du�y1, Utz Roedig2, John Herbert1, and Corma
 J. Sreenan1

1 Computer S
ien
e Dept., University College Cork, Cork
2 InfoLab21, Lan
aster University, Lan
asterAbstra
t. Event-driven operating systems su
h as TinyOS are the pre-ferred
hoi
e for wireless sensor networks. Alternative designs followinga
lassi
al multi-threaded approa
h are also available. A popular im-plementation of su
h a multi-threaded sensor network operating systemis MANTIS. The event-based TinyOS is more energy e�
ient than themulti-threaded MANTIS system. However, MANTIS is more
apablethan TinyOS of supporting time
riti
al tasks as task preemption is sup-ported. Thus, timeliness
an be traded for energy e�
ien
y by
hoosingthe appropriate operating system. In this paper we present a MANTISkernel modi�
ation that enables MANTIS to be as power-e�
ient asTinyOS. Results from an experimental analysis demonstrate that themodi�ed MANTIS
an be used to �t both sensor network design goals ofenergy e�
ien
y and timeliness.1 Introdu
tionSensor nodes must be designed to be energy e�
ient in order to allow long peri-ods of unattended network operation. However, energy e�
ien
y is not the onlydesign goal in a sensor network. For example, timely pro
essing and reportingof sensing information is often required as well. This might be needed to guar-antee a maximum delivery time of sensing information from a sensor, througha multi-hop network, to a base-station. To be able to give su
h assuran
es, net-work
omponents with a deterministi
 behavior will be required. The operatingsystem running on sensor nodes is one su
h
omponent.Event-based operating systems are
onsidered to be the best
hoi
e for build-ing energy e�
ient sensor networks as they require little memory and pro
essingresour
es. Hen
e, the event-based TinyOS [1℄ is
urrently the preferred operatingsystem for sensor networks. Event-based operating systems are not very usefulin situations where tasks have stri
t pro
essing deadlines. Tasks are pro
essedsequentially, a prioritization of important tasks to meet pro
essing deadlinesis not possible. Multi-threaded operating systems are more suitable if su
h re-quirements must be ful�lled. Thread preemption and
ontext swit
hing enablessu
h systems to prioritize tasks and meet deadlines. The MANTIS [2℄ operatingsystem is the �rst multi-threaded operating system designed spe
i�
ally for wire-less sensor networks. Unfortunately, MANTIS has a relatively high pro
essing

overhead for thread management. This pro
essing overhead is dire
tly related toredu
ed energy e�
ien
y be
ause of the relative in
rease in CPU a
tivity.This
reates the dilemma that both design goals - energy e�
ien
y and time-liness -
an only
urrently be optimized independently. One is for
ed to
hoosewhi
h goal is of higher importan
e in the
onsidered appli
ation s
enario. There-fore, it would be good if the dilemma
ould be resolved by either making TinyOSmore responsive or MANTIS more energy e�
ient. In this paper the later prob-lem is solved: We present a MANTIS kernel modi�
ation to in
rease power e�-
ien
y. As the results show, MANTIS
an be modi�ed to be as power-e�
ient asTinyOS without impa
ting vital kernel fun
tionality. Thus, the modi�ed MAN-TIS
an be used to solve both important sensor network design goals.The next Se
tion of the paper presents related work. Se
tion 3 presets pre-liminary resear
h
omparing TinyOS and MANTIS regarding event pro
essing
apabilities and energy
onsumption. This
omparison motivates the modi�
a-tions of the MANTIS kernel for better energy e�
ien
y. Se
tion 4 explains indetail the MANTIS kernel. Se
tion 5 presents and explains the MANTIS kernelmodi�
ations. Se
tion 6 shows an evaluation of the modi�ed kernel. Se
tion 7
on
ludes the paper.2 Related WorkProblems arise when a sensor network appli
ations require to be energy e�
ientand have to provide timely pro
essing
apabilities at the same time.One example of an operating system that tries to bridge the gap is Contiki[3℄. Contiki is an event-based sensor network operating system that in
ludes athreaded library that
an be optionally
ompiled to fa
ilitate multi-threadedappli
ations. Thus multi-threaded
apabilities
an be sele
tively designated tospe
i�
 pro
esses, without the pro
essing and memory overhead in all parts ofthe system.A similar approa
h
an be seen in [4,5℄. In both works the TinyOS operatingsystem is en
apsulated in a multi-threaded kernel. The operating system is thens
heduled as a thread su
h that it
an be preempted by
omplex threads ifrequired. Thus TinyOS still a
hieves preemption without sa
ri�
ing the light-weight s
heduling
hara
teristi
s. In summary, the resear
h fo
us of [3,4,5℄ is tominimize the pro
essing overhead of a multi-threaded system, by isolating onlythe pro
esses that require multi-threaded
apabilities. However no e�ort is madeto redu
e the overhead of the multi-threaded pro
esses.In [6℄ a programming
on
ept
alled �proto-threads� is des
ribed whi
h al-lows the programmer to develop a program using a multi-threaded program-ming syntax. It is argued that an event-based system is more power-e�
ientbut that programming
on
urrent (sensor network) appli
ations with threads,as opposed to event handlers, is easier for the programmer. Proto-threads are,however, merely a thread abstra
tion. They do not provide thread preemption,thus
omplex pro
esses
annot easily be multiplexed with high priority taskswithout introdu
ing blo
king.

The resear
h listed above tries to
ompromise between power-e�
ient event-based s
hedulers and multi-threaded s
hedulers. The work presented in this pa-per fo
us on the redu
tion of pro
essing overheads in multi threaded sensornetwork operating systems.3 Preliminary Resear
hThe preliminary resear
h investigates the di�eren
es of the multi-threaded MAN-TIS [2℄ and the event-based TinyOS [1℄ operating systems. More details on thepreliminary resear
h
an be found in [7℄. The experimental methodology is re-used for the evaluation of the optimized MANTIS presented in Se
tion 6.3.1 Evaluation GoalsIt is generally assumed that an event-driven operating system is very suitable forsensor networks be
ause few resour
es are needed, resulting in an energy-e�
ientsystem. However, the exa
t �gures are unknown and therefore quanti�ed in thispreliminary resear
h. On the other hand it is
laimed that a multi-threadedoperating system has good event pro
essing
apabilities in terms of meetingpro
essing deadlines. Again, an in-depth analysis is
urrently missing and istherefore
ondu
ted. For
omparison purposes, the event-based system TinyOSand the multi-threaded system MANTIS exe
uting the same sensor networkappli
ations on the [8℄ are investigated.The following parameters - while the sensor node is exe
uting a generi
 ap-pli
ation - are evaluated:1. Event Pro
essing : The average task exe
ution time Et of a parti
ular re-o

urring sensor task is measured. Average task exe
ution time and its vari-an
e are a measure for the event handling
apabilities of the system.2. Energy Consumption: The per
entage of experiment time It spent with anidle CPU is measured. CPU idle time
an be used to suspend the CPU andthus relates dire
tly to the energy e�
ien
y of a system.An appli
ation s
enario for the evaluation has to be de�ned, as the parametersof interest are in�uen
ed signi�
antly by the s
enario. It was de
ided to usea s
enario of a generi
 nature so that the results are appli
able to a range ofreal-world appli
ations.3.2 Evaluation SetupIn many
ases, a sensor network is used to
olle
t periodi
ally obtained mea-surement data at a
entral point (sink or base-station) for further analysis. Thesensor nodes in su
h a network exe
ute two major tasks. Sensor nodes performthe sensing task and they are used to forward the gathered data to the sink. Ifthe sink is not in dire
t radio range of a node, other nodes
loser to the sink

are used to forward data. The exe
ution time of the sensing task will dependon the nature of the physi
al phenomenon monitored and the
omplexity of thealgorithm used to analyze it. Therefore, the position of the node in su
h a net-work and the
omplexity of the sensing task de�ne the operating system load ofthe sensor node. The
omplexity of the sensing task is varied in the experimentsand hen
e the appli
ation s
enario is
onsidered abstra
t, as it
an be
omparedwith many di�erent real-world deployment s
enarios.The
omplexity of the sensing operation depends on the phenomenon moni-tored, the sensor devi
e used and the data pre-pro
essing required. As a result,the operating system
an be stressed very di�erently. If, for example, an AT-MEGA128 CPU with a pro
essing speed of 4Mhz is
onsidered (a
urrentlypopular
hoi
e for sensor nodes), a simple temperature sensing task pro
essedthrough the Analogue to Digital Converter
an be performed in less than 1ms[9℄. In this
ase only a 16bit value has to be transferred from the sensing devi
eto the CPU. If the same devi
e is used in
onjun
tion with a
amera, imagepro
essing might take some time before a de
ision is made. Depending on
am-era resolution and image pro
essing performed, a sensing task
an easily takemore than 100ms [10℄. Other appli
ation examples do
umented in the litera-ture are situated in between these values. Note that a long sensing task
an besplit-up into several sub-tasks but in pra
ti
e this is not always possible. Theexperimental evaluation spans the task sizes des
ribed (1ms...100ms).The following paragraphs give an exa
t spe
i�
ation of the abstra
t appli
a-tion s
enario used, whi
h is de�ned by its topology, tra�
 pattern and sensingpattern. The appli
ation s
enario is then implemented using TinyOS and MAN-TIS on the DSYS25[8℄ sensor platform for evaluation.Topology The sensor network is used to forward sensor data towards a singlebase-station in the network. It is assumed that a binary tree topology is formedin the network (see Fig. 1). Depending on the position n in the tree, a sensornode might pro
ess varying amounts of pa
kets. Nodes
loser to the root are moreinvolved in pa
ket forwarding as these nodes have to multiplex pa
ket forwardingoperations with their sensing operations. In the experiments, the behaviour ofa single node at all possible positions n is emulated and measured by applyingthe sensing pattern and network tra�
 as des
ribed next.
n=3

n=1

n=2Fig. 1. Binary TreeSensing Pattern A homogeneous a
tivity in the sensor �eld is assumed for theabstra
t appli
ation s
enario. Ea
h sensor gathers data with a �xed frequen
y

fs. Thus, every ts = 1/fs a sensing task of the duration ls has to be pro
essed.As mentioned, the duration ls is variable between ls = 4000 and ls = 400000
lo
k
y
les depending on the type of sensing task under
onsideration (Whi
h
orresponds to 1ms/100ms on a 4MHz CPU).Tra�
 Pattern Depending on the position n of a node in the tree, varyingamounts of forwarding tasks have to be performed. It is assumed that no timesyn
hronization among the sensors in the network exists. Thus, even if ea
h sen-sor produ
es data with a �xed frequen
y, data forwarding tasks are not
reatedat �xed points in time. The arrival rate λn of pa
kets at a node at tree-level nis modeled as a Poisson pro
ess. As the pa
ket forwarding a
tivity is related tothe sensing a
tivity in the �eld, λn is given by:
λn = (2n

− 1) · fs (1)This equation is a simpli�
ation; queuing e�e
ts and losses are negle
ted,but nevertheless provides a good method to s
ale the pro
essing performan
erequirements of a sensor network appli
ation. It is assumed that the duration(
omplexity) lp of the pa
ket-pro
essing task, is lp = 4000
lo
k
y
les. This isthe e�ort ne
essary to read a pa
ket from the trans
eiver, perform routing andre-send the pa
ket over the trans
eiver. This is a
ommon pro
essing time andwas obtained analyzing the DSYS25 sensor nodes using the Nordi
 radio [11℄.3.3 Event Pro
essingIt is assumed that the pa
ket-pro
essing task within the nodes has priority sothat deadlines regarding pa
ket forwarding
an be met. Thus, in the MANTISimplementation, the pa
ket-pro
essing task has a higher priority than the sensingtask. In the TinyOS implementation, no prioritization is implemented as thisfeature is not provided by the operating system.Task Exe
ution Time To
hara
terize pro
essing performan
e of the operat-ing system, the average task exe
ution time Et of the pa
ket forwarding task, ismeasured. During the experiment, J pa
ket-pro
essing times ej are re
orded. Todo so, the task start time estart and the task
ompletion time estop are measuredand the pa
ket-pro
essing time is re
orded as e = estop−estart. The average taskexe
ution time Et is
al
ulated at the end of the experiment as: Et =
∑

ej/J .For ea
h tree position n, the experiment is run until J = 25000 pa
ket-pro
essingevents are re
orded.Results In the experiment, the average task exe
ution time Et is determined forTinyOS and MANTIS supporting the abstra
t appli
ation s
enario (see Fig. 2).Where MANTIS is used, it
an be observed that the averagepa
ket-pro
essing time is independent of the sensing task exe
ution time.Furthermore, Et is also independent from the position n of the node in the

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 P

ro
c
e

s
s
in

g
 T

im
e

 E
t
(m

s
)

Tree Position [n]

MANTIS Et, ls=1 ms
MANTIS Et, ls=5 ms

MANTIS Et, ls=10 ms
MANTIS Et, ls=25 ms
MANTIS Et, ls=50 ms
MANTIS Et, ls=75 ms

MANTIS Et, ls=100 ms

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 P

ro
c
e

s
s
in

g
 T

im
e

 E
t
(m

s
)

Tree Position [n]

TinyOS Et, ls=1 ms
TinyOS Et, ls=5 ms

TinyOS Et, ls=10 ms
TinyOS Et, ls=25 ms
TinyOS Et, ls=50 ms
TinyOS Et, ls=75 ms

TinyOS Et, ls=100 ms

a) MANTIS b) TinyOSFig. 2. Average pa
ket-pro
essing time Et .tree. The average pro
essing time in
reases slightly, under a heavy load. This isdue to the fa
t that under heavy load pa
ket forwarding tasks have to bequeued (see Fig. 2 a)).Where TinyOS is used, the average pro
essing time for the pa
ket forwardingtask Et depends on the length of the sensing ls of the sensing task. In addition,under heavy load the queuing e�e
ts of the pa
ket forwarding tasks also
on-tribute somewhat to the average pro
essing time (see Fig. 2 b)).The varian
e in the pa
ket-pro
essing time Et is also re
orded but is notshown due to spa
e restri
tions. However, it has to be noted that this varian
eis signi�
antly smaller in MANTIS than in TinyOS (see [7℄ for details). Thus,MANTIS is better able to support s
enarios whi
h require predi
table pro
essingbehaviour.The thread prioritization
apability of MANTIS is
learly visible in the ex-perimental results. Pa
ket pro
essing times are independent of the
on
urrentlyexe
uted and lower priority sensing task. In TinyOS, sensing and pa
ket for-warding task delays are
oupled, and the in�uen
e of the sensing a
tivity on thepa
ket forwarding a
tivity is
learly visible.3.4 Energy ConsumptionTo evaluate power-e�
ien
y, This study investigates the available idle time inwhi
h low-power operations
an be s
heduled. Thus the
omparative e�e
tivenessof spe
i�
 power management poli
ies
an be guaged on the amount of potentiallow-power (idle) time available.Idle time In the experiment, the abstra
t appli
ation s
enario is exe
uted bythe sensor node running TinyOS or MANTIS. The duration of the experiment
T and the duration ik of K idle time periods during the experiment is re
orded.
i is de�ned as i = istop − istart . All idle periods ik are summarized and theper
entage idle time, It, the per
ent of experiment time, in whi
h the pro
essoris idle, whi
h is
al
ulated as follows: It = (

∑

ik/T) · 100. Again, for ea
h tree

position n, the experiment is run until J = 25000 pa
ket-pro
essing events arere
orded.Results In the �rst experiment, the per
entage idle time It is determined forTinyOS and MANTIS supporting the abstra
t appli
ation s
enario. (see Fig. 3).
 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

P
e

rc
e

n
ta

g
e

 I
d

le
 T

im
e

 I
t
(%

 o
f

T
)

Tree Position [n]

K
modified

 ls=1ms
K

modified
 ls=5ms

K
modified

 ls=10ms
K

modified
 ls=25ms

K
modified

 ls=50ms
K

modified
 ls=75ms

K
modified

 ls=100ms

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8
P

e
rc

e
n

ta
g

e
 I

d
le

 T
im

e
 I

t
(%

 o
f

T
)

Tree Position [n]

TinyOS Ik, ls=1 ms
TinyOS Ik, ls=5 ms

TinyOS Ik, ls=10 ms
TinyOS Ik, ls=25 ms
TinyOS Ik, ls=50 ms
TinyOS Ik, ls=75 ms

TinyOS Ik, ls=100 msa) MANTIS b) TinyOSFig. 3. Per
entage idle time It for both operating systems.The time spent in idle mode drops for both operating systems exponentiallywith the in
reasing node position in the tree des
ribed by the parameter n. Thisbehavior is expe
ted as the number of pa
ket tasks in
reases a

ordingly. Lessobvious is the fa
t that the available idle time drops faster in MANTIS thanin TinyOS. The fast drop in idle time is
aused by the
ontext swit
hes in theMANTIS operating system. The more pa
ket forwarding tasks are
reated, themore likely it is that a sensing task is
urrently running when a pa
ket interrupto

urs. Subsequently, a
ontext swit
h to the higher prioritized forwarding taskis needed.3.5 FindingsThe experimental results show that MANTIS has a mu
h more predi
tive be-havior exe
uting the pa
ket-pro
essing task than TinyOS. More pre
ise, theexe
ution time in MANTIS has a low variation and is independent of other a
-tivity su
h as the sensing task. Thus, MANTIS would be preferable in situationsthat need deterministi
 and timely pro
essing. However, the MANTIS system isnot as power-e�
ient as TinyOS. Thus, TinyOS would seem preferable if energy
onsumption is deemed to be of primary importan
e. If the system is not loaded(leaf node with n = 1 and a sensing task with the size of ls = 1ms) a di�eren
eof only 0.1% in idle time is measured. However, if the system is under a heavyload (leaf node with n = 8 and a sensing task with the size of ls = 100ms) a 6.9%di�eren
e in the idle time is en
ountered. The biggest di�eren
e is measured for
n = 8 with a task size of ls = 1ms whi
h results in a di�eren
e of 7.6%.

Algorithm 1 Thread stru
ture1: mos_thread_new(thread_A,128, PRIORITY_HIGH)2: thread_A3: while(running)4: ...5: mos_semaphore_wait(A1)6:7: int_A8: ...9: mos_semaphore_post(A1)10: ...
1:dispat
h_thread()2: PUSH_THREAD_STACK()3: CURRENT_THREAD = readyQ.getThread()4: CURRENT_THREAD.state=RUNNING5: POP_THREAD_STACK()

part A part B4 The MANTIS Kernel Ar
hite
tureThe threaded MANTIS ar
hite
ture implements thread-preemption, allowing theoperating system to interrupt any a
tive thread to immediately begin pro
essinga thread of higher priority. As a result, the operating system
an respond faster to
riti
al events. In general, the system ar
hite
ture follows the design prin
iples of
lassi
al multi-threaded operating systems. However, to fa
ilitate the ne
essarypower management requirements, energy saving me
hanisms are integrated inthe thread s
heduling. The pro
essing states (e.g. sleeping, waiting) of all threadsare monitored and used to de
ide whi
h power saving modes of the CPU shouldbe a
tivated. Power saving is a
tivated through a so-
alled idle task whi
h isspe
ial purpose thread with the lowest possible thread priority, that is s
heduledwhen all other threads are ina
tive.4.1 OverviewEa
h task the operating system must support
an be implemented as aseparate MANTIS thread. A simpli�ed view of this thread stru
ture is shownin Alg. 1, part A. A new thread is initialized via the fun
tion mos_thread_new(line 1). Subsequently the thread pro
essing, often implemented as anin�nite loop, is started (line 3). Pro
essing might be halted using thefun
tion mos_semaphore_wait when a thread has to wait for a resour
e tobe
ome available (line 5). An interrupt handler (line 7) using the fun
tionmos_semaphore_post (line 9) is used to signal the waiting thread that theresour
e is now available and thread pro
essing is resumed. While a thread iswaiting on a resour
e to be
ome available, other threads might be a
tivated orif no other pro
essing is required, a power saving mode is entered.As an example, a thread might be used to pro
ess in
oming pa
kets from atrans
eiver
hip. In this
ase, the mos_semaphore_wait is used to suspend thethread until a new pa
ket arrives at the trans
eiver. If the trans
eiver re
eives apa
ket, an interrupt is exe
uted and the thread is resumed to read the
urrentlyavailable pa
ket and pro
ess it.

4.2 S
hedulingThread s
heduling is performed within the kernel fun
tion dispat
h_threadshown in Alg. 1, part B. This fun
tion sear
hes a data stru
ture
alled readyQfor the highest prioritized thread and a
tivates it. The readyQ is an array oflinked lists
ontaining pointers to the
urrently a
tive threads. Ea
h index ofthe array
orresponds to a thread priority level.When the dispat
h_thread fun
tion is
alled, the
urrent a
tive thread issuspended
alling PUSH_THREAD_STACK (line 2). Thus, the
urrent CPUregister information is saved to the heap memory allo
ated to the
urrent thread.The highest priority thread is then sele
ted from the readyQ (line 3) and itsregister values are restored by the POP_THREAD_STACK fun
tion (line 5).The thread
an then resume pro
essing at the exa
t point it was previouslysuspended.Before the dispat
h_thread fun
tion is
alled, the readyQ stru
ture is up-dated. Threads that are
urrently sleeping or that are waiting on a semaphore areex
luded from the readyQ. The s
heduling through the dispat
h_thread fun
tion
an be initiated by two di�erent means: initiation within a semaphore operationor initiation through a time sli
e timer event.Semaphore A thread uses the fun
tion mos_semaphore_wait to
oordinatea

ess to a shared resour
e. If the resour
e is not ready, pro
essing is suspendeduntil the resour
e asso
iated with the semaphore be
omes available (Alg. 2, partA). If the resour
e is not immediately available (, line 3), the
urrent threadis suspended and a
ontext swit
h using the previously explained fun
tion dis-pat
h_thread is performed (line 7). Before the
ontext swit
h is performed, thefun
tion update_sleep_
ounters is exe
uted (line 6). This fun
tion is used to
he
k if
urrently sleeping threads have to wake up and join the readyQ stru
-ture. In the MANTIS operating system, the user has the ability to make athread sleep for a period of time. Thus, suspended threads either wait on asemaphore or they sleep. Pointers to the sleeping threads are stored in a sortedlist, the sleepQ. Sleeping threads are sorted a

ording to their wakeup time,su
h that the earliest thread to wake-up will be at the head of the queue. Thefun
tion update_sleep_
ounters updates the wakeup times and if threads inthe sleepQ are due, they are moved to the readyQ. Within an interrupt routine,mos_semaphore_post is
alled to inform a waiting thread that a resour
e is nowavailable for pro
essing (Alg. 2, part B). If a thread is waiting for the resour
e(line 3), the thread is a
tivated and added to the readyQ stru
ture. Thereafter,the update_sleep_
ounters fun
tion is
alled to
he
k if sleeping threads haveto be a
tivated as well. Finally, the thread waiting for the semaphore (or ahigher prioritized thread that was moved from the sleepQ) is a
tivated usingdispat
h_thread.Time Sli
e Timer A timer is set to
reate an interrupt every 20ms (Alg. 3).This interrupt serves two purposes. First, the interrupt a
ts as a time sli
e for

Algorithm 2 Semaphore1: mos_semaphore_wait(Semaphore s)2: s.val--3: if (s.val<0)4: s.addThread(CURRENT_THREAD)5: CURRENT_THREAD.state=BLOCKED6: update_sleep_
ounters()7: dispat
h_thread() 1: mos_semaphore_post(Semaphore s)2: s.val++3: if (s.getThread()!=NULL)4: s.getThread().state=RUNNING5: readyQ.addThread(s.getThread())6: update_sleep_
ounters()7: dispat
h_thread()part A part BAlgorithm 3 Timer Interrupt1: t_sli
e_int()2: readyQ.addThread(CURRENT_THREAD)3: update_sleep_
ounters()4: dispat
h_thread()the Round Robin s
heduler, in whi
h lengthly tasks are interrupted to give otherequal priority threads a pro
essing time-sli
e, thus preventing pro
ess starvation.Se
ond, the periodi
 interrupts are used to
he
k if threads in the sleepQ have towake-up. The update_sleep_
ounters fun
tion is
alled from the timer interruptto rea
tivate and res
hedule sleeping threads. Obviously, threads sent to sleepusing this me
hanism do not expe
t to sleep with a period less than the periodi
interrupt, 20ms. Finally, dispat
h_thread is
alled to perform the
ontext swit
hto the new thread. In many appli
ation
ases, the new thread will be the sameas the old thread.4.3 Power ManagementIn MANTIS, thread state information is used to determine the level of powermanagement to be initiated. Sensor network pro
essors have a number of di�er-ent low-power modes, providing a range of energy
onserving states, varying inpower-
onserving performan
e and wake-up responsiveness.Thread state information is used in MANTIS to determine if a thread requiresa responsive wake-up, or if more relaxed wake-up times
an be a

epted. If thethread is BLOCKED (Alg. 2, part A:line 3), it is assumed that fast wake-uptimes are required and an idle power mode with fast wake-up response time is
hosen. If all threads reside in a SLEEPING state, then the thread sleep
ountersare used to determine the next wakeup period. A timer is set to wakeup thepro
essor in time for the next thread event. Thus the pro
essor
an be put intoa deep sleep power mode and wakeup early enough to
ompensate for the slowpro
essor wake-up period.Power management in the MANTIS kernel is implemented as a separatethread, the idle thread. The idle thread is assigned the lowest priority and isalways in a ready state. Thus, if no threads are ready to be pro
essed the idlethread by default will be the next thread to be a
tivated and the pro
essor willbe transitioned into a low power state determined as previously explained.

Algorithm 4 Modi�ed semaphore fun
tions1: mos_semaphore_wait(Semaphore s)2: s.val--3: if (s.val<0)4: if(readyQ.getThread!=NULL)5: if(CURRENT_THREAD.state==BLOCKED_RUNNING)6: CURRENT_THREAD.state==BLOCKED7: s.addThread(CURRENT_THREAD)8: #ifdef MANTIS_SLEEP9: update_sleep_
ounters()10: dispat
h_thread()11: else12: CURRENT_THREAD.state=BLOCKED_RUNNING13: do_power_management()
1: mos_semaphore_post(Semaphore s)2: s.val++3: if (s.thread.state==BLOCKED)4: s.getThread().state=RUNNING5: readyQ.addThread(s.getThread())6: #ifdef MANTIS_SLEEP7: update_sleep_
ounters()8: dispat
h_thread()9: else10: s.getThread().state=RUNNINGpart A part B5 MANTIS Kernel Modi�
ationsAs shown in the preliminary resear
h, MANTIS has the
apability of task pre-emption and thus
riti
al high priority tasks
an be exe
uted deterministi
ally.However, the power
onsumption of a node running MANTIS is
onsiderablyhigher than the power
onsumption of a node running TinyOS. The high energy
onsumption of the MANTIS operating system is
aused by the pro
essing over-head for thread management. This relatively high overhead is mainly
aused bythe (i) idle thread, the (ii) time sli
ing and the ine�
ient use of the (iii) kernelqueuing stru
tures.5.1 Idle ThreadAs previously explained, power management is implemented in MANTIS withinthe idle thread. If no other thread is
urrently a
tive, the idle thread is dispat
hedwhi
h subsequently initiates the appropriate power-saving state. This method ofpower management is elegant as all power management
ode is
ontained in athread but it is also highly ine�
ient.When all threads are ina
tive (SLEEPING or BLOCKED), a
ontext swit
hto the idle-thread is performed. Thereafter, as soon as one thread resumes a
-tivity, another
ontext swit
h is required. The new a
tive thread might even bethe same thread that was a
tive before the idle thread was
alled. Thus, for ea
hsleep a
tivity two
ontext swit
hes have to be performed whi
h are in most
asesnot ne
essary on a typi
al sensor node running a single appli
ation.To redu
e the problem, the idle thread
on
ept
an be abandoned and threadsinitiate a sleep state dire
tly. Thus, the kernel thread handling overhead
an begreatly redu
ed, espe
ially in s
enarios where the same thread has to be a
tivatedafter a sleep phase, avoiding
ontext swit
hing.In the modi�ed MANTIS kernel, the power-management pro
edure that wasimplemented as a thread is now implemented as a separate fun
tion that isinvoked dire
tly by the kernel when no more threads are available to pro
ess.The optimization requires a modi�
ation of the idle loop fun
tion. In the original

MANTIS kernel the idle loop is initially invoked by the kernel_init fun
tion toexe
ute for the duration of operating system operation as a separate thread.In the modi�ed MANTIS kernel, the idle loop is no longer en
apsulated as athread, but instead dire
tly invoked from the kernel blo
king pro
edures, i.e.mos_semaphore_sleep and mos_semaphore_wait (see Alg. 4). A new threadstate is added to the kernel, the BLOCKED_RUNNING state is used to signifyif a thread
an be rea
tivated after power management without a thread swit
h.A thread is �rst transitioned to this state when waiting for a semaphore while noother thread is a
tive (Alg. 4, part A:line 12). Thereafter, the power managementfun
tion is involved (line 13). If the pro
essor is later rea
tivated and a resour
eis then ready, the mos_semaphore_post fun
tion will be
alled and the
onditionat Alg. 4 part B:line 3 will be used to determine if the blo
ked thread was alreadyrunning before the power-management was invoked. If this is the
ase, all threadregisters values still reside in the pro
essor registers and a
ontext swit
h is notne
essary. Instead, the thread state is
hanged to RUNNING, and the threadresumes pro
essing.5.2 Time Sli
e TimerAs mentioned, MANTIS
reates a time sli
e interrupt every 20ms to alternatelypro
ess threads of equal priority and addtionally update the sleepQ.The periodi
 exe
ution of the interrupt routine, and espe
ially the ne
essaryupdates to determine whi
h threads from the sleepQ have to be woken, repre-sents a signi�
ant thread management overhead. Additionally, the sleepQ is also
he
ked with ea
h semaphore operation.Round robin exe
ution of equal priority threads is not really required in asensor node. Either, one thread
an wait for the other to �nish exe
ution or,if starvation is a
on
ern, another priority level
an be assigned to the thread.The sleep fun
tion using the sleepQ
an be implemented alternatively using atimer interrupt
ombined with a semaphore. Therefore, the time sli
e timer
anbe removed from the MANTIS kernel without losing vital kernel fun
tionality.In the modi�ed MANTIS kernel, the time sli
ing fun
tionality and the asso
i-ated sleep fun
tion using the sleepQ are removed. More spe
i�
ly, this fun
tion-ality is moved to a separate library that
an be in
luded in the kernel if needed.Appli
ations
an de
ide not to in
lude the time sli
e timer and the asso
iatedsleep fun
tionality in favor of more e�
ient pro
essing. Su
h appli
ations
antherefor not invoke the mos_thread_sleep fun
tion to blo
k a thread and mustinstead
all a semaphore and a timer to blo
k a thread for a prede�ned period oftime. Equally prioritized threads in su
h appli
ations exe
ute sequentially until
ompletion instead of being pro
essed in a round-robin fashion.To in
lude the default MANTIS time sli
e timer, the user need only spe
ify#de�ne MANTIS_SLEEP in the appli
ation
ode. The MANTIS_SLEEP en-vironment variable is used at part A:lines 8 and part B:6 in Alg. 4 to determine ifthe thread sleep fun
tionality is required and the thread sleep
ounters must beupdated with the update_sleep_
ounters fun
tion. Additionally, the time sli
etimer is set a
tive.

5.3 The Kenel QueuesThe MANTIS kernel maintains 3 types of link-list quing stru
tures. The readyQ,sleepQ and semaphore queue are used to store threads in a READY, SLEEPINGor BLOCKED state respe
tivly. A thread
annot reside in more than one queueat a time, and will therefore frequently swit
h between the queues as it
hangesstate. As MANTIS normally handles a small number of threads (12 is the defaultnumber of threads supported [12℄) simple data stru
tures and ways of using them
an be implemented. For example, all thread pointers
an be kept in a simplearray of pointers ordered by thread priority. Thread priority's and the numberof threads normally do not
hange while an appli
ation is running and thus, thestru
ture
an be kept fairly stati
. Refren
ing threads with stati
 arrays requiresfar less pro
essing that using a link-list.In the modi�ed MANTIS kernel all linked list stru
tures are removed fromkernel methods. The readyQ is
hanged from being an array of linked lists to asimple array of thread pointers. The thread pointers are kept permanently in thearray while the threads exist. The thread pointers stored in this array are sortedregarding thread priority. Thus, addition and deletion of threads is
ostly butshould not be
ommon during a node's operation as threads are normally
reatedat system startup. This
hange simpli�es operations on the readyQ stru
turewhen semaphore fun
tions are
alled. Threads need not swit
h between queues,a simple
hange of the thread state variable is all that is needed for a thread toswit
h state. The fun
tion readyQ.getThread (Alg. 4, part A:line 4) returns the�rst thread pointer in the readyQ array where the thread is in state READY.If a thread is suspended and waits for a semaphore, the thread pointer isadded to the semaphore stru
ture. However, a
opy of the thread pointer remainsin the readyQ. The semaphore stru
ture is also modi�ed to point dire
tly toa single thread rather than a link-list of multiple threads. Thus, the fun
tions.addThread (Alg. 4, part B:line 5) is redu
ed to a simple pointer
opy operation.The �exibility of using a semaphore to blo
k multiple threads is obviously tradedfor e�
ien
y.6 Experimental EvaluationThe MANTIS kernel modi�
ations are evaluated using exa
tly the same setupthat was used in the preliminary resear
h. Again, the average task exe
ution time
Et and the per
entage of experiment time It spent with an idle CPU are mea-sured. A

ording to the goals of the kernel modi�
ations, the event pro
essing
apabilities of MANTIS should not be shortened and the energy
onsumptionshould be improved due to a redu
tion of pro
essing overhead.6.1 Event Pro
essingFig. 4 shows the measured average pa
ket-pro
essing time Et of the original andthe modi�ed MANTIS kernel for sensing tasks of two di�erent sizes.

The results show that the average pro
essing time of the pa
ket forwardingtask is redu
ed signi�
antly. This de
rease is due to the redu
ed pro
essing over-head of the modi�ed MANTIS kernel. The pro
essing time is measured from thepoint the pa
ket arrives to the time the pa
ket is pro
essed whi
h in
ludes possi-ble
ontext swit
hing time (see Se
tion 3.3). The pure pa
ket-pro
essing withinthe pa
ket-pro
essing thread a

ounts for 1ms. Thus, the operating system
annot exe
ute the pa
ket forwarding faster than 1ms.The trend in the pa
ket-pro
essing time is due to the fa
t that the pa
ket-pro
essing might sometimes preempt an a
tive sensing task. Additionally, pa
ketqueuing e�e
ts be
ome more dominant with in
reasing network load (an in
reas-ing n).It
an be dedu
ed from the measurements that no signi�
ant di�eren
e in thevarian
e of pa
ket-pro
essing timesbetween the orignial and modi�ed MANTISkernel(same magnitude of variation in the exe
ution times). Additionally thepro
essing speed is in
reased as the number of kernel overheads are redu
ed.
 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 P

ro
c
e

s
s
in

g
 T

im
e

 E
t
(m

s
)

Tree Position [n]

K
original

 ls=1ms
K

modified
 ls=1ms

TinyOS ls=1ms

 10

 20

 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 P

ro
c
e

s
s
in

g
 T

im
e

 E
t
(m

s
)

Tree Position [n]

K
original

 ls=100ms
K

modified
 ls=100ms

TinyOS ls=100ms

a) 1ms sensing b) 100ms sensingFig. 4. Average pa
ket-pro
essing time Et.6.2 Energy ConsumptionThe per
entage idle time is
ompared with the theoreti
al maximal possibleper
entage idle time, Imax
k . Imax

k is
al
ulated by taking only the appli
ationpro
essing of the abstra
t appli
ation s
enario into a

ount (see.Se
tion 3.2).Thus, Imax
k represents the per
entage running time that the pro
essor wouldbe idle using an ideal operating system whi
h would have no operating systempro
essing overhead. Imax

k depends on the task durations ls and lp of sensingand pa
ket forwarding task respe
tively, the frequen
y of the sensing task fs,the CPU speed scpu and the position n of the node in the abstra
t appli
ations
enario. Imax
k is
al
ulated using Equation (1):

Imax
k =

(

1 −

fs

scpu

· (ls + lp · (2n
− 1))

)

· 100 (2)

Fig. 5 shows the measured average idle time It of the original and the mod-i�ed MANTIS kernel for sensing tasks of two di�erent sizes. Additionally, themaximum possible idle time Imax
k is shown in the graph.The results show that the available idle time is now very
lose to the the-oreti
al maximum. The di�eren
e is espe
ially visible under high network load(high n). The modi�ed MANTIS kernel redu
es overheads in
ontext swit
heswhi
h is valuable in
ases of a high system load.Compared with the original MANTIS, the kernel modi�
ations improve theidle time (by 8% for n = 8 with ls = 100ms). Compared with the TinyOSoperating system, the optimized MANTIS is now even outperforming TinyOSin some
ases. For example for ls = 100ms, n = 8, the modi�ed MANTIS is 1%better than TinyOS. If ls = 1ms, n = 8, the modi�ed MANTIS is 0.3% worsethan TinyOS under a heavy load.

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

P
e

rc
e

n
ta

g
e

 I
d

le
 T

im
e

 I
t
(%

 o
f

T
)

Tree Position [n]

K
original

 ls=1ms
K

modified
 ls=1ms

TinyOS ls=1ms
I
max

k ls=1ms
 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

P
e

rc
e

n
ta

g
e

 I
d

le
 T

im
e

 I
t
(%

 o
f

T
)

Tree Position [n]

K
original

 ls=100ms
K

modified
 ls=100ms

TinyOS ls=100ms
I
max

k ls=100msa) 1ms sensing b) 100ms sensingFig. 5. Per
entage idle time It.7 Con
lusionAs it is shown in the paper, it is possible to make a multi-threaded sensornetwork operating system as power-e�
ient as an event-based system. Thus, the
ommonly a

epted fa
t that multi threaded systems are not useful for sensornetworks due to their heigh energy
onsumption is invalid. Espe
ially in s
enariosthat require timely event pro
essing, multi threaded systems
an be
onsidereda useful option.The MANTIS kernel modi�
ations redu
e the pro
essing overhead neededfor thread management dramati
ally. This overhead is redu
ed to su
h an ex-tent that in usual sensor network appli
ation s
enarios MANTIS has a similaroverall performan
e to TinyOS. As kernel overhead is dire
tly related to energye�
ien
y, the energy
onsumption of a MANTIS node is now similar to thatof a TinyOS node. After the kernel modi�
ations, MANTIS is 1% more energye�
ient than TinyOS (in
ase of heavy load with n = 8, ls = 100ms). With the

original MANTIS kernel, TinyOS is 6.9% better than MANTIS (in
ase of heavyload with n = 8, ls = 100ms).We
on
lude that multi threaded systems
an be used in sensor networks ifdesigned
arefully.Referen
es1. J. Hill, R. Szew
zyk, A. Woo, S. Hollar, D. Culler, and K. Pister, �System ar-
hite
ture dire
tions for networked sensors,� in ACM SIGOPS Operating SystemsReview, vol. 34, pp. 93�104, De
ember 2000.2. H. Abra
h, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shu
ker, andR. Han, �MANTIS: System support for multimodal networks of in-situ sensors,� in2nd ACM International Workshop on Wireless Sensor Networks and Appli
ations,pp. 50�59, September 2003.3. A. Dunkels, B. Gronvall, and T. Voigt, �Contiki - a lightweight and �exible op-erating system for tiny networked sensors,� in 29th Annual IEEE InternationalConferen
e on Lo
al Computer Networks, pp. 455�462, November 2004.4. E. Trumpler and R. Han., �A systemati
 framework for evolving TinyOS,� in IEEEWorkshop on Embedded Networked Sensors, pp. 61�65, May 2006.5. J. Regehr, A. Reid, K. Webb, M. Parker, and J. Lepreau, �Evolving real-timesystems using hierar
hi
al s
heduling and
on
urren
y analysis,� in 24th IEEEInternation Real-Time Systems Symposium, pp. 25�36, De
ember 2003.6. A. Dunkels, O. S
hmidt, and T. Voigt, �Using protothreads for sensor node pro-gramming,� in Workshop on Real-World Wireless Sensor Networks, June 2005.7. C. Du�y, U. Roedig, J. Herbert, and C. J. Sreenan, �A performan
e analysis ofTinyOS and MANTIS,� te
h. rep., University College Cork, November 2006.8. A. Barroso, J. Benson, T. Murphy, U. Roedig, C. Sreenan, J. Barton, S. Bellis,B. O'Flynn, and K. Delaney, �Demo abstra
t: The DSYS25 sensor platform,� in2nd international
onferen
e on Embedded networked sensor systems, pp. 314�314,November 2004.9. Atmel Corporation, Atmega128 Datasheet, rev n ed., Mar
h 2006.10. M. Rahimi, R. Baer, O. I. Iroezi, J. C. Gar
ia, J. Warrior, D. Estrin, and M. Sri-vastava., �Cy
lops: In situ image sensing and interpretation in wireless sensor net-works,� in In pro
. 3rd international
onferen
e on Embedded Networked SensorSystems,, pp. 192�204, November 2005.11. Nordi
 Semi
ondu
tor, Datasheet NRF2401, rev 1.1 ed., June 2004.12. S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shu
ker, C. Gru-enwald, A. Torgenson, and R. Han., �MANTIS OS: An embedded multithreadedoperating system for wireless mi
ro sensor platforms,� ACM kluwer Mobile Net-works & Appli
ations Journal, spe
ial Issue on Wireless Sensor Networks, August2005.

