Achieving Real-Time Operation in TinyOS

Cormac Duffy, John Herbert

Computer Science Dept.
University College Cork, Ireland
{c.duffy|j.herbert }@cs.ucc.ie

Abstract Achieving predictable operation is a complex task in sensor
networks as applications intrinsically rely on unstable network links to
transmit unpredictable quantities of environmental data. A real-time de-
velopment infrastructure is needed to provide a greater degree of per-
formance control while still adhering to the development constraints in-
herent in sensor networks. In this paper we discuss a popular sensor
network operating system TinyOS, that has been successful in providing
an efficient development environment, but never strived to provide hard
real-time operation. The lack of temporal specification and constraints
in TinyOS precludes real-time application development. In this paper we
propose a real-time model that provides a temporal infrastructure as a
foundation for building and analysing real-time applications.

Wireless Sensor Networks, TinyOS, Real-Time.

1 Introduction

Wireless sensor networks are tiny sensor acquisition systems wirelessly tethered
to provide cost efficient fine grained monitoring for environments. Often deployed
in harsh environments, sensor networks frequently precipitate erratic network
communication, as nodes can malfunction, or radio communication links can be
disrupted. Forecasting the behaviour of an application is therefore very difficult.
Developers can try to determine the response times of a system through extensive
testing but this is very costly and does not guarantee timely operation. Thus
performance control mechanisms are required in sensor networks to ensure timely
execution of processes.

Performance control is an active research topic in sensor networks that en-
deavours to achieve deterministic operation in each layer of the sensor network
architecture. Calculable end-to-end message transmission times rely on a num-
ber of real-time network layer technologies such as a real-time MAC layer and
a real-time routing protocol. However coordinating such technologies in a pre-
dictable application fundamentally requires a real-time operating system, which
will be the focus of this paper.

Real-time systems are a common infrastructure within embedded architec-
tures, as such, the term real-time has come to have different meanings in litera-
ture. To resolve any semantic ambiguities we provide the following definitions:

— A real-time system is a system in which the correct run-time behaviour
depends upon results being delivered within certain temporal constraints.

— The goal of a real-time system is not to provide the fastest possible execution
time for all processes, but to provide methodologies for calculating the worst
case response time of a process and allow developers to predict the maximum
utilization of the system.

In other words developers should be able to predict under what level of stress a
real-time operating systems will fail, if failure is possible.

We focus on developing real-time applications for TinyOS[1], a tiny modu-
lar operating system designed specifically for sensor network systems. Wireless
sensor networks have many unique constraints that are ideally met by the light-
weight response mechanisms in TinyOS and should ideally be adopted by a
real-time sensor network OS. However many of the TinyOS mechanisms operate
unpredictably and are at odds with real-time engineering. The TinyOS compo-
nent design, for example, provides functional encapsulation at the expense of
hiding temporal behaviour. Processes are distributed over a range of component
event-handlers, executing asynchronously in response to environment events. Ap-
plications can be constructed to execute efficiently and possibly meet real-time
requirements, but TinyOS does not provide any support for developers to defini-
tively calculate conditions under which an application will correctly behave.

The contributions of this paper can be summarised as follows,

— We propose to extend TinyOS, with real-time components. By providing
more concise temporal specifications to component interfaces, we can facili-
tate more calculable process timings.

— We also describe how these constraints can be used to calculate the execution
times of processes distributed over numerous event handlers, in order to
determine task schedulability.

The rest of this paper is organised as follows, in section 2, we provide a more
detailed analysis of the TinyOS operating systems and its processing constraints.
In section 3, we introduce the idea of implementing real-time components in
TinyOS as a basis for constraining processes. In section 4 we expand on this
idea and demonstrate how such a system can be used to determine the temporal
behaviour of component operations. A brief overview of related work in both
real-time component system and TinyOS is detailed in section 5 and finally we
conclude in section 6.

2 A Sensor Network Operating System

In realising a real-time sensor network operating system, it is important to con-
sider the concepts and constraints of both architectures before a bipartite solu-
tion can be found. In this section we briefly outline the TinyOS process model.
We discuss the architectural support for sensor network applications and its
negative impact on real-time applications.

2.1 TinyOS

The TinyOS operating system implements an event-based architecture to facili-
tate sensor network application requirements in an efficient and responsive man-
ner. All IO processes are divided into split-phased operations, which consist of a
request operation, e.g. getData and a response operation such as dataReady[1].
In this way no process has to poll an interrupt or delay execution for any pending
processes. Any lengthly operations can be scheduled as a TinyOS task to exe-
cute atomically at a later time in order to ensure all pending events are quickly
processed.

Sensor network applications require complex concurrent mechanisms that
can respounsively execute concurrent events. Such development is often compli-
cated by either race-conditions, which can be a common source of annoyance
inherent in concurrent development, or by the memory constraints of the target
sensor node platform. TinyOS employs a static component design to facilitate
race-condition checks and perform dead code elimination, allowing developers to
eliminate potential bugs and reduce application memory and code size require-
ments.

2.2 Real-Time Vulnerabilities

The TinyOS design principles satisfy fundamental sensor network requirements
but in turn inhibit traditional methods of performance control. Traditional real-
time systems implement a procedure-based architecture, which provides meth-
ods for realizing a process as a common entity, a thread|2]. However component
based architectures naturally define a concrete boundary between component en-
tities through which neither data nor state are shared. The thread of execution
is dispersed among a series of component event handlers, that trigger indeter-
minately in response to interrupts, obscuring the common thread of execution.
While event-based process flows are designed to provide responsive execution,
they require an upper bound on the number of times they are triggered, to allow
developers to calculate the processor utilization at any point in time.

TinyOS components conceal the temporal behaviour of processes. Compo-
nents inherently encapsulate functionality and provide coherent interfaces to
ensure unambiguous operation. However the component interfaces in TinyOS do
not express the temporal requirements or properties that might facilitate pre-
dictable execution. For example a message send interface might express a radio
transmit operation with a sendMessage command and its counterpart event mes-
sageSent. The interface would adequately describe the component operation but
would provide no support for predictable operation. Developers can try to deter-
mine the worst case execution times of a system through extensive testing but
this is very costly as a single change in component arrangement can drastically
change system behaviour making predictable operation impossible.

The TinyOS task scheduler allows developers to have a non-preemptive con-
trol over task execution. TinyOS tasks run atomically with respect to each other
to avoid race conditions [4], but there can be significant latency in scheduling

high-priority tasks if a lengthly low priority task has already begun execution.
This has a significant impact on task schedulability as non-preemptive tasks can
only be effectively scheduled if task execution times are known in advance [3].
However, as previously explained, the TinyOS component architecture conceals
such information.

3 Real-Time Component Based Software Engineering

In the previous section we highlighted real-time analysis problems associated
with component-based architectures such as TinyOS. Determination of process
execution times is complicated by the fact that processes are fragmented over a
number of different components. In this section we introduce real-time compo-
nent engineering concepts as a basis for providing a suitable model for predeter-
mining process execution timings.

3.1 The Real-Time Architecture

We propose to extend the TinyOS model to facilitate real-time component con-
figurations. Encapsulating functionality as a real-time component facilitates in-
tuitive control over system operations. Real-time components provide interfaces
that express both temporal behaviour and operation control. This enables de-
velopers to enforce timing constraints at discrete and important intersections of
component functionality.

Component Interface
TinyOS generic component

Real Time Port

Figurel. Real-Time Component

Real-time component models facilitate predictable systems, but their design
is complicated by the complex temporal relationships components require to
meet their collaborative deadlines. This assumption has been thoroughly re-
searched by Wegener & Mueller[3] who claim that the overhead in designing a
component is not recovered until its fifth reuse.

To reduce the modeling complexity of a real-time system, our model im-
plements a hybrid approach to developing real-time component functionality.
Complex component relationships are decomposed into real-time black-bozes, in

which a real-time component encapsulates generic components and bounds their
inputs and outputs at the real-time component interface.

Each real-time interface is constrained by a real-time port which validates
incoming events based on a minimum period constraint defined in the real-
time interface. Any subsequent event that occurs within the minimum period
of invocation is rejected by the real-time port. This constraint-based modular
engineering style facilitates a more user-friendly real-time model allowing real-
time applications to be realized in TinyOS without introducing overly elaborate
concepts or multiple changes to the existing TinyOS Architecture (See Figure
1).

4 Defining a Real-Time Interface

In this section we define a hybrid real-time component model that exploits config-
urative information to provide more transparent task execution times. We start
by defining a real-time component as simply a wiring configuration of generic
components that are arranged in a way that they can meet the constraints im-
posed by the real-time specification. Each real-time component will support and
possibly require a set of time constrained split-phase operations. Each split-phase
interface operation 7T; is bounded by e;, r;, x;, in which e; and r; are the par-
tial worst-case execution and partial response times of T; respectively and x;
is the minimum period of invocation and deadline of T;. The interface response
time includes the time to execute a task and the task delay in waiting for a
hardware device to respond. Both times do not take into account delay resulting
from concurrent processes and do not include execution time of sub-component
functionality.

We also introduce some constraints and assumptions about the execution of
the real-time model in order to ensure that real-time analysis is both correct and
feasible:

First, it is assumed that the developer will design a real-time component
with generic TinyOS components that adhere to the real-time constraints of the
component. Second, a real-time split-phase interface may only be invoked once
per event occurrence. Encapsulated components cannot be wired to components
encapsulated in a different real-time component. All real-time components will
execute atomically with respect to each other (this rule is enforced by the real-
time port described earlier). Finally, all task periods are equal to their deadlines.

In TinyOS the workload of task 7, is distributed over a hierarchy of interface
functions as per Figure 2. As such, if task 7 invokes the interface function 77,
then its worst case execution time E., must include the worst-case execution
time of T, E;. However T} subsequently invokes T5 and T35 which in turn invoke
other interface functions. Therefore to calculate E,, we must first calculate F;
where I is the set of interface functions that are directly invoked by 7 and
T; € I,. If each interface is only invoked once per event, we can calculate the
worst cause execution time of 7, E, and the worst case response time R, with
the following;:

al

T1
AN

T3
_ 5 Ta Te 7
To | /
Ts

Figure2. Task Graph

Definition 1. E, = ZjeIT E;,R; = Zje].,. R;

Subsequently, F;,R; will depend on the partial execution and response times
e;,r; and the worst case execution and response times Ej;, R; such that T € I;.
We can therefore calculate F; and R; with the following:

Definition 2. VTi,Ei =e¢; + EjEIi Ej, R, =r;+ Zjeli Rj

Having provided a means for determining an interface function execution time,
we now turn our attention to the minimum period of interface T;, ;. In practise
this value will rarely be equal to the minimum period of invocation required by
the system P;, however the constraint is necessary to provide an upper bound
on the number of interface invocations. Calculating the required period P; is
complicated by the variable cardinality a component relationship can facilitate.
If an interface T; is used by a number of components, than the interface must be
at least able to handle the combined number of invocations of all the connected
components. We define @); as the set of real-time interface functions that rely
on T;, and endeavour to determine P; such that we can determine the required
period of sub-components I; and determine if the relationship can be supported,
in other words if z; < P;.

min{p; |Ti€Q:i} ¢ .
Definition 3. V;, P,= lQ:l !f Q70

4.1 Example use of model

We provide a simple configuration of real-time components, in order to demon-
strate how our model could be applied to a real-time application. Figure 3 shows
a simple outline of two tasks using a set of real time components for a sensing
application.

We determine F; and R; from Definition 2 above. The task period times P;
are calculated using Definition 3 and we present the results in Table 1. In order
to determine if each interface is overloaded, we check if the assigned P; in Table

T1<x=20, e=5, r=5> Ts<x=11, e=1, r=3>

ERT temp sensor | ——> E RT adc
ERT ECGsensor| £——3 E RT noise filter

T2<x=40, e=10, r=10> T4<x=15, =6, r=6>

Figure3. Scenario of Real-Time Components

1 is greater then the port period constraint in Figure 3. From the table it is
evident that the relation 7o — T} is feasible, but (73,77) — T35 is not as
I3 f Pg.

In this section we have provided a means for developers to check the fea-
sibility of a component relationship and a means to determine execution time,
deadline and period requirements necessary for conventional task schedulability
algorithms (such as a non-preemptive EDF algorithm [5]). However due to space
constraints we can not show detailed results of this model in this paper.

] @ | &L | E [R [P]
T 0 {Tg} 541 5+3 20
Tl 0 [{T3,T4}[10 + 6 + 1|10 + 6 + 3[40
Ts|{T1, T2} 0 1 3 10
Ta| {T2} [6 6 40

Tablel. Real-Time Interface Calculations

5 Related Work

Improving predictability and real-time performance has been lightly researched
by the sensor network community. AmbientRT was one of the first real-time
operating systems designed specifically for sensor networks, using a preemptive
task based EDF scheduler [6]. Regehr et al. tried to resolve the scheduling latency
issues with TinyOS by facilitating task preemption with a multi-threaded task
queue as part of a hierarchical concurrency analysis research [7].

Many studies in real-time component systems have been carried out to in-
vestigate the problem of constraining components such that they can be inde-
pendently developed and operate predictably in a component system. Wang et
al. proposed a system of component contracts in which each component inter-
face would specify the maximum number of operations it would support and
provide a worst-case response time, depending on interface utilization [8]. Shin

provided a component specification that facilitated a composition framework
analysis of components [9]. There has been sufficient interest in both real-time
sensor networks and real-time component systems to provide a solid foundation
for research into real-time component operation in TinyOS.

6 Conclusion

In this paper we have highlighted the problems with implementing a real-time
application in TinyOS. Component interfaces do not specify temporal require-
ments, while event-handlers execute in an unconstrained manner. While TinyOS
is uniquely developed for sensor networks, its components can be supplemented
with real-time components proposed in this paper, to ensure a more strict and
transparent component behaviour. Further more we have shown how a system
of component functions can be realized by a common task with defined exe-
cution times, in order to determine task schedulability and ensure predictable
operation.

References

1. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister. System Architecture
Directions for Networked Sensors, ASPLOS 2000, Cambridge, Nov 2000.

2. H. C. Lauer, R. M. Needham. On the Duality of Operating System Structures. In
Proc. Second Inter-Operating Systems Review, 13, 2, April 1979, pp. 3-19.

3. J. Wegener and F. Mueller. A comparison of static analysis and evolutionary testing
for the verification of timing constraints. Real-Time Systems, 21, 3, Nov 2001, pp.
241-268.

4. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler. The nesC Lan-
guage: A Holistic Approach to Networked Embedded Systems. Proceedings of Pro-
gramming Language Design and Implementation (PLDI) 2003, Jun 2003.

5. K. Jeffay, D. F. Stanat, U. Martel. On Non-Preemptive Scheduling of Periodic and
Sporadic Tasks. In Proc. Twelfth IEEE Real-Time Systems Symposium, SanAnto-
nio, Texas, Dec 1991, IEEE Computer Society Press, pp. 129-139.

6. T. J. Hofmeijer, S. O. Dulman, P.G. Jansen, P. J. M. Havinga. AmbientRT - real
time system software support fordata centric sensor networks. 2nd Int. Conf. on In-
telligent Sensors, Sensor Networks and Information Processing (ISSNIP), published
by IEEE Computer Society Press, Los Alamitos, California, held in Melbourne,
Australia, Dec 2004, pp 61-66.

7. J. Regehr, A. Reid, K. Webb, M. Parker, J. Lepreau. Evolving real-time systems
using hierarchical scheduling and concurrency analysis. In Proc. of the 24th IEEE
Real-Time Systems Symposium (RTSS2003), Cancun, Mexico, Dec 2003, pp 25-36.

8. S. Wang, S. Rho, R. Bettati, W. Zhao, Real-Time Component-based Systems. In
Proc. IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), Mar 2005.

9. I. Shin and I. Lee, Component-based Design for Real-Time Embedded Systems.
Tech. Report, Dept. of Computer and Information Science, University of Pennsyl-
vania, 2005.

