
A
hieving Real-Time Operation in TinyOSCorma
 Du�y, John HerbertComputer S
ien
e Dept.University College Cork, Ireland{
.du�y|j.herbert}�
s.u

.ieAbstra
t A
hieving predi
table operation is a
omplex task in sensornetworks as appli
ations intrinsi
ally rely on unstable network links totransmit unpredi
table quantities of environmental data. A real-time de-velopment infrastru
ture is needed to provide a greater degree of per-forman
e
ontrol while still adhering to the development
onstraints in-herent in sensor networks. In this paper we dis
uss a popular sensornetwork operating system TinyOS, that has been su

essful in providingan e�
ient development environment, but never strived to provide hardreal-time operation. The la
k of temporal spe
i�
ation and
onstraintsin TinyOS pre
ludes real-time appli
ation development. In this paper wepropose a real-time model that provides a temporal infrastru
ture as afoundation for building and analysing real-time appli
ations.Wireless Sensor Networks, TinyOS, Real-Time.1 Introdu
tionWireless sensor networks are tiny sensor a
quisition systems wirelessly tetheredto provide
ost e�
ient �ne grained monitoring for environments. Often deployedin harsh environments, sensor networks frequently pre
ipitate errati
 network
ommuni
ation, as nodes
an malfun
tion, or radio
ommuni
ation links
an bedisrupted. Fore
asting the behaviour of an appli
ation is therefore very di�
ult.Developers
an try to determine the response times of a system through extensivetesting but this is very
ostly and does not guarantee timely operation. Thusperforman
e
ontrol me
hanisms are required in sensor networks to ensure timelyexe
ution of pro
esses.Performan
e
ontrol is an a
tive resear
h topi
 in sensor networks that en-deavours to a
hieve deterministi
 operation in ea
h layer of the sensor networkar
hite
ture. Cal
ulable end-to-end message transmission times rely on a num-ber of real-time network layer te
hnologies su
h as a real-time MAC layer anda real-time routing proto
ol. However
oordinating su
h te
hnologies in a pre-di
table appli
ation fundamentally requires a real-time operating system, whi
hwill be the fo
us of this paper.Real-time systems are a
ommon infrastru
ture within embedded ar
hite
-tures, as su
h, the term real-time has
ome to have di�erent meanings in litera-ture. To resolve any semanti
 ambiguities we provide the following de�nitions:

� A real-time system is a system in whi
h the
orre
t run-time behaviourdepends upon results being delivered within
ertain temporal
onstraints.� The goal of a real-time system is not to provide the fastest possible exe
utiontime for all pro
esses, but to provide methodologies for
al
ulating the worst
ase response time of a pro
ess and allow developers to predi
t the maximumutilization of the system.In other words developers should be able to predi
t under what level of stress areal-time operating systems will fail, if failure is possible.We fo
us on developing real-time appli
ations for TinyOS[1℄, a tiny modu-lar operating system designed spe
i�
ally for sensor network systems. Wirelesssensor networks have many unique
onstraints that are ideally met by the light-weight response me
hanisms in TinyOS and should ideally be adopted by areal-time sensor network OS. However many of the TinyOS me
hanisms operateunpredi
tably and are at odds with real-time engineering. The TinyOS
ompo-nent design, for example, provides fun
tional en
apsulation at the expense ofhiding temporal behaviour. Pro
esses are distributed over a range of
omponentevent-handlers, exe
uting asyn
hronously in response to environment events. Ap-pli
ations
an be
onstru
ted to exe
ute e�
iently and possibly meet real-timerequirements, but TinyOS does not provide any support for developers to de�ni-tively
al
ulate
onditions under whi
h an appli
ation will
orre
tly behave.The
ontributions of this paper
an be summarised as follows,� We propose to extend TinyOS, with real-time
omponents. By providingmore
on
ise temporal spe
i�
ations to
omponent interfa
es, we
an fa
ili-tate more
al
ulable pro
ess timings.� We also des
ribe how these
onstraints
an be used to
al
ulate the exe
utiontimes of pro
esses distributed over numerous event handlers, in order todetermine task s
hedulability.The rest of this paper is organised as follows, in se
tion 2, we provide a moredetailed analysis of the TinyOS operating systems and its pro
essing
onstraints.In se
tion 3, we introdu
e the idea of implementing real-time
omponents inTinyOS as a basis for
onstraining pro
esses. In se
tion 4 we expand on thisidea and demonstrate how su
h a system
an be used to determine the temporalbehaviour of
omponent operations. A brief overview of related work in bothreal-time
omponent system and TinyOS is detailed in se
tion 5 and �nally we
on
lude in se
tion 6.2 A Sensor Network Operating SystemIn realising a real-time sensor network operating system, it is important to
on-sider the
on
epts and
onstraints of both ar
hite
tures before a bipartite solu-tion
an be found. In this se
tion we brie�y outline the TinyOS pro
ess model.We dis
uss the ar
hite
tural support for sensor network appli
ations and itsnegative impa
t on real-time appli
ations.

2.1 TinyOSThe TinyOS operating system implements an event-based ar
hite
ture to fa
ili-tate sensor network appli
ation requirements in an e�
ient and responsive man-ner. All IO pro
esses are divided into split-phased operations, whi
h
onsist of arequest operation, e.g. getData and a response operation su
h as dataReady [1℄.In this way no pro
ess has to poll an interrupt or delay exe
ution for any pendingpro
esses. Any lengthly operations
an be s
heduled as a TinyOS task to exe-
ute atomi
ally at a later time in order to ensure all pending events are qui
klypro
essed.Sensor network appli
ations require
omplex
on
urrent me
hanisms that
an responsively exe
ute
on
urrent events. Su
h development is often
ompli-
ated by either ra
e-
onditions, whi
h
an be a
ommon sour
e of annoyan
einherent in
on
urrent development, or by the memory
onstraints of the targetsensor node platform. TinyOS employs a stati

omponent design to fa
ilitatera
e-
ondition
he
ks and perform dead
ode elimination, allowing developers toeliminate potential bugs and redu
e appli
ation memory and
ode size require-ments.2.2 Real-Time VulnerabilitiesThe TinyOS design prin
iples satisfy fundamental sensor network requirementsbut in turn inhibit traditional methods of performan
e
ontrol. Traditional real-time systems implement a pro
edure-based ar
hite
ture, whi
h provides meth-ods for realizing a pro
ess as a
ommon entity, a thread[2℄. However
omponentbased ar
hite
tures naturally de�ne a
on
rete boundary between
omponent en-tities through whi
h neither data nor state are shared. The thread of exe
utionis dispersed among a series of
omponent event handlers, that trigger indeter-minately in response to interrupts, obs
uring the
ommon thread of exe
ution.While event-based pro
ess �ows are designed to provide responsive exe
ution,they require an upper bound on the number of times they are triggered, to allowdevelopers to
al
ulate the pro
essor utilization at any point in time.TinyOS
omponents
on
eal the temporal behaviour of pro
esses. Compo-nents inherently en
apsulate fun
tionality and provide
oherent interfa
es toensure unambiguous operation. However the
omponent interfa
es in TinyOS donot express the temporal requirements or properties that might fa
ilitate pre-di
table exe
ution. For example a message send interfa
e might express a radiotransmit operation with a sendMessage
ommand and its
ounterpart eventmes-sageSent. The interfa
e would adequately des
ribe the
omponent operation butwould provide no support for predi
table operation. Developers
an try to deter-mine the worst
ase exe
ution times of a system through extensive testing butthis is very
ostly as a single
hange in
omponent arrangement
an drasti
ally
hange system behaviour making predi
table operation impossible.The TinyOS task s
heduler allows developers to have a non-preemptive
on-trol over task exe
ution. TinyOS tasks run atomi
ally with respe
t to ea
h otherto avoid ra
e
onditions [4℄, but there
an be signi�
ant laten
y in s
heduling

high-priority tasks if a lengthly low priority task has already begun exe
ution.This has a signi�
ant impa
t on task s
hedulability as non-preemptive tasks
anonly be e�e
tively s
heduled if task exe
ution times are known in advan
e [3℄.However, as previously explained, the TinyOS
omponent ar
hite
ture
on
ealssu
h information.3 Real-Time Component Based Software EngineeringIn the previous se
tion we highlighted real-time analysis problems asso
iatedwith
omponent-based ar
hite
tures su
h as TinyOS. Determination of pro
essexe
ution times is
ompli
ated by the fa
t that pro
esses are fragmented over anumber of di�erent
omponents. In this se
tion we introdu
e real-time
ompo-nent engineering
on
epts as a basis for providing a suitable model for predeter-mining pro
ess exe
ution timings.3.1 The Real-Time Ar
hite
tureWe propose to extend the TinyOS model to fa
ilitate real-time
omponent
on-�gurations. En
apsulating fun
tionality as a real-time
omponent fa
ilitates in-tuitive
ontrol over system operations. Real-time
omponents provide interfa
esthat express both temporal behaviour and operation
ontrol. This enables de-velopers to enfor
e timing
onstraints at dis
rete and important interse
tions of
omponent fun
tionality.
Figure1. Real-Time ComponentReal-time
omponent models fa
ilitate predi
table systems, but their designis
ompli
ated by the
omplex temporal relationships
omponents require tomeet their
ollaborative deadlines. This assumption has been thoroughly re-sear
hed by Wegener & Mueller[3℄ who
laim that the overhead in designing a
omponent is not re
overed until its �fth reuse.To redu
e the modeling
omplexity of a real-time system, our model im-plements a hybrid approa
h to developing real-time
omponent fun
tionality.Complex
omponent relationships are de
omposed into real-time bla
k-boxes, in

whi
h a real-time
omponent en
apsulates generi

omponents and bounds theirinputs and outputs at the real-time
omponent interfa
e.Ea
h real-time interfa
e is
onstrained by a real-time port whi
h validatesin
oming events based on a minimum period
onstraint de�ned in the real-time interfa
e. Any subsequent event that o

urs within the minimum periodof invo
ation is reje
ted by the real-time port. This
onstraint-based modularengineering style fa
ilitates a more user-friendly real-time model allowing real-time appli
ations to be realized in TinyOS without introdu
ing overly elaborate
on
epts or multiple
hanges to the existing TinyOS Ar
hite
ture (See Figure1).4 De�ning a Real-Time Interfa
eIn this se
tion we de�ne a hybrid real-time
omponent model that exploits
on�g-urative information to provide more transparent task exe
ution times. We startby de�ning a real-time
omponent as simply a wiring
on�guration of generi

omponents that are arranged in a way that they
an meet the
onstraints im-posed by the real-time spe
i�
ation. Ea
h real-time
omponent will support andpossibly require a set of time
onstrained split-phase operations. Ea
h split-phaseinterfa
e operation Ti is bounded by ei, ri, xi, in whi
h ei and ri are the par-tial worst-
ase exe
ution and partial response times of Ti respe
tively and xiis the minimum period of invo
ation and deadline of Ti. The interfa
e responsetime in
ludes the time to exe
ute a task and the task delay in waiting for ahardware devi
e to respond. Both times do not take into a

ount delay resultingfrom
on
urrent pro
esses and do not in
lude exe
ution time of sub-
omponentfun
tionality.We also introdu
e some
onstraints and assumptions about the exe
ution ofthe real-time model in order to ensure that real-time analysis is both
orre
t andfeasible:First, it is assumed that the developer will design a real-time
omponentwith generi
 TinyOS
omponents that adhere to the real-time
onstraints of the
omponent. Se
ond, a real-time split-phase interfa
e may only be invoked on
eper event o

urren
e. En
apsulated
omponents
annot be wired to
omponentsen
apsulated in a di�erent real-time
omponent. All real-time
omponents willexe
ute atomi
ally with respe
t to ea
h other (this rule is enfor
ed by the real-time port des
ribed earlier). Finally, all task periods are equal to their deadlines.In TinyOS the workload of task τ , is distributed over a hierar
hy of interfa
efun
tions as per Figure 2. As su
h, if task τ invokes the interfa
e fun
tion T1,then its worst
ase exe
ution time Eτ , must in
lude the worst-
ase exe
utiontime of T1, E1. However T1 subsequently invokes T2 and T3 whi
h in turn invokeother interfa
e fun
tions. Therefore to
al
ulate Eτ , we must �rst
al
ulate Eiwhere Iτ is the set of interfa
e fun
tions that are dire
tly invoked by τ and
Ti ∈ Iτ . If ea
h interfa
e is only invoked on
e per event, we
an
al
ulate theworst
ause exe
ution time of τ , Eτ and the worst
ase response time Rτ withthe following:

T3

T1

T2

T5 T4 T6 T7

T8

T9 Figure2. Task GraphDe�nition 1. Eτ =
∑

j∈Iτ
Ej ,Rτ =

∑

j∈Iτ
RjSubsequently, Ei,Ri will depend on the partial exe
ution and response times

ei,ri and the worst
ase exe
ution and response times Ej , Rj su
h that Tj ∈ Ii.We
an therefore
al
ulate Ei and Ri with the following:De�nition 2. ∀Ti
, Ei = ei +

∑

j∈Ii
Ej , Ri = ri +

∑

j∈Ii
RjHaving provided a means for determining an interfa
e fun
tion exe
ution time,we now turn our attention to the minimum period of interfa
e Ti, xi. In pra
tisethis value will rarely be equal to the minimum period of invo
ation required bythe system Pi, however the
onstraint is ne
essary to provide an upper boundon the number of interfa
e invo
ations. Cal
ulating the required period Pi is
ompli
ated by the variable
ardinality a
omponent relationship
an fa
ilitate.If an interfa
e Ti is used by a number of
omponents, than the interfa
e must beat least able to handle the
ombined number of invo
ations of all the
onne
ted
omponents. We de�ne Qi as the set of real-time interfa
e fun
tions that relyon Ti, and endeavour to determine Pi su
h that we
an determine the requiredperiod of sub-
omponents Ii and determine if the relationship
an be supported,in other words if xi ≤ Pi.De�nition 3. ∀i,Pi=

{

min{pj |Tj∈Qi}
|Qi|

if Qi 6= ∅

pi if Qi = ∅4.1 Example use of modelWe provide a simple
on�guration of real-time
omponents, in order to demon-strate how our model
ould be applied to a real-time appli
ation. Figure 3 showsa simple outline of two tasks using a set of real time
omponents for a sensingappli
ation.We determine Ei and Ri from De�nition 2 above. The task period times Piare
al
ulated using De�nition 3 and we present the results in Table 1. In orderto determine if ea
h interfa
e is overloaded, we
he
k if the assigned Pi in Table

Figure3. S
enario of Real-Time Components1 is greater then the port period
onstraint in Figure 3. From the table it isevident that the relation T2 −→ T4 is feasible, but (T2, T1) −→ T3 is not as
x3 � P3.In this se
tion we have provided a means for developers to
he
k the fea-sibility of a
omponent relationship and a means to determine exe
ution time,deadline and period requirements ne
essary for
onventional task s
hedulabilityalgorithms (su
h as a non-preemptive EDF algorithm [5℄). However due to spa
e
onstraints we
an not show detailed results of this model in this paper.

Ti Qi Ii Ei Ri Pi

T1 ∅ {T3} 5 + 1 5 + 3 20

T2 ∅ {T3, T4} 10 + 6 + 1 10 + 6 + 3 40

T3 {T1, T2} ∅ 1 3 10

T4 {T2} ∅ 6 6 40Table1. Real-Time Interfa
e Cal
ulations
5 Related WorkImproving predi
tability and real-time performan
e has been lightly resear
hedby the sensor network
ommunity. AmbientRT was one of the �rst real-timeoperating systems designed spe
i�
ally for sensor networks, using a preemptivetask based EDF s
heduler [6℄. Regehr et al. tried to resolve the s
heduling laten
yissues with TinyOS by fa
ilitating task preemption with a multi-threaded taskqueue as part of a hierar
hi
al
on
urren
y analysis resear
h [7℄.Many studies in real-time
omponent systems have been
arried out to in-vestigate the problem of
onstraining
omponents su
h that they
an be inde-pendently developed and operate predi
tably in a
omponent system. Wang etal. proposed a system of
omponent
ontra
ts in whi
h ea
h
omponent inter-fa
e would spe
ify the maximum number of operations it would support andprovide a worst-
ase response time, depending on interfa
e utilization [8℄. Shin

provided a
omponent spe
i�
ation that fa
ilitated a
omposition frameworkanalysis of
omponents [9℄. There has been su�
ient interest in both real-timesensor networks and real-time
omponent systems to provide a solid foundationfor resear
h into real-time
omponent operation in TinyOS.6 Con
lusionIn this paper we have highlighted the problems with implementing a real-timeappli
ation in TinyOS. Component interfa
es do not spe
ify temporal require-ments, while event-handlers exe
ute in an un
onstrained manner. While TinyOSis uniquely developed for sensor networks, its
omponents
an be supplementedwith real-time
omponents proposed in this paper, to ensure a more stri
t andtransparent
omponent behaviour. Further more we have shown how a systemof
omponent fun
tions
an be realized by a
ommon task with de�ned exe-
ution times, in order to determine task s
hedulability and ensure predi
tableoperation.Referen
es1. J. Hill, R. Szew
zyk, A. Woo, S. Hollar, D. Culler, K. Pister. System Ar
hite
tureDire
tions for Networked Sensors, ASPLOS 2000, Cambridge, Nov 2000.2. H. C. Lauer, R. M. Needham. On the Duality of Operating System Stru
tures. InPro
. Se
ond Inter-Operating Systems Review, 13, 2, April 1979, pp. 3-19.3. J. Wegener and F. Mueller. A
omparison of stati
 analysis and evolutionary testingfor the veri�
ation of timing
onstraints. Real-Time Systems, 21, 3, Nov 2001, pp.241-268.4. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler. The nesC Lan-guage: A Holisti
 Approa
h to Networked Embedded Systems. Pro
eedings of Pro-gramming Language Design and Implementation (PLDI) 2003, Jun 2003.5. K. Je�ay, D. F. Stanat, U. Martel. On Non-Preemptive S
heduling of Periodi
 andSporadi
 Tasks. In Pro
. Twelfth IEEE Real-Time Systems Symposium, SanAnto-nio, Texas, De
 1991, IEEE Computer So
iety Press, pp. 129-139.6. T. J. Hofmeijer, S. O. Dulman, P.G. Jansen, P. J. M. Havinga. AmbientRT - realtime system software support fordata
entri
 sensor networks. 2nd Int. Conf. on In-telligent Sensors, Sensor Networks and Information Pro
essing (ISSNIP), publishedby IEEE Computer So
iety Press, Los Alamitos, California, held in Melbourne,Australia, De
 2004, pp 61-66.7. J. Regehr, A. Reid, K. Webb, M. Parker, J. Lepreau. Evolving real-time systemsusing hierar
hi
al s
heduling and
on
urren
y analysis. In Pro
. of the 24th IEEEReal-Time Systems Symposium (RTSS2003), Can
un, Mexi
o, De
 2003, pp 25-36.8. S. Wang, S. Rho, R. Bettati, W. Zhao, Real-Time Component-based Systems. InPro
. IEEE Real-Time and Embedded Te
hnology and Appli
ations Symposium(RTAS), Mar 2005.9. I. Shin and I. Lee, Component-based Design for Real-Time Embedded Systems.Te
h. Report, Dept. of Computer and Information S
ien
e, University of Pennsyl-vania, 2005.

