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Abstract

The capabilities of a sensor network are strongly influenced by the operating system used on the sensor nodes. In general, two

different sensor network operating system types are currently considered: event driven and multi-threaded. It is commonly assumed

that event driven operating systems are more suited to sensor networks as they use less memory and processing resources. Hence,

the de-facto standard operating system used for sensor networks today is the event driven operating system TinyOS. However, if

factors other than resource usage are considered important, a multi-threaded system might be preferred.

This paper investigates the resource overhead that is incurred by running a multi-threaded operating system on a sensor

node. The resources considered are memory usage and power consumption. Additionally, the event handling capabilities of event

driven and multi-threaded operating systems are analyzed and compared. For comparison, the event-based system TinyOS and the

multi-threaded system MANTIS executing the same sensor network applications on the DSYS25 sensor platform are used. The

results presented in this paper show that for a number of application areas a thread-based sensor network operating system is

feasible and preferable.

Index Terms

Wireless sensor networks, OS performance and energy consumption evaluation, Event-driven/Multi-threaded OS, Real-time

OS, TinyOS, MANTIS.
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I. INTRODUCTION

Wireless sensor networks consist of battery powered sensor nodes used to gather information about a monitored physical

phenomenon. To ensure long periods of unattended network operation, the energy consumption of the sensor nodes must be

very low. The operating system used for the sensor nodes influences energy consumption on two levels. First, the design of

the operating system defines the minimum resource requirements such as CPU speed and memory capacity that the sensor

hardware must provide. Second, the operating system design influences the usage pattern of the CPU and thus defines how

often energy-efficient sleep periods can be activated. As the sensor node must provide a service, the operating system design

can not be focused solely on energy efficiency. Sensor readings and incoming messages must be handled promptly by the

sensor node. The responsiveness of the node must be sufficient to handle events and requests according to their deadlines.

The responsiveness is influenced by the operating system design in two ways. First, the responsiveness depends on the task

scheduling capabilities of the operating system. Second, the design of the operating system influences the degree to which task

scheduling is performed by the system or by the systems programmer. Obviously, the last point is subjective as it depends on

the quality and knowledge of the programmers. Nevertheless, the issue has strong impact in real world application designs.

Currently, operating systems for sensor nodes follow either one of two different design concepts. Operating systems following

the first design approach are called event driven. Every action an operating system for a sensor node has to perform is triggered

by an event (e.g. a timer, an interrupt indicating new sensor readings or an incoming radio packet). The tasks associated with

the event are executed and thereafter the node is sent to an energy-efficient sleep state or the next event is processed. As events

are processed sequentially, expensive context switching between tasks is not necessary1. An example of such an operating

system is TinyOS [5]. The second approach follows the classic multi-threaded operating system design. The operating system

multiplexes execution time between the different tasks, implemented as threads. While switching from one thread to another,

the current context has to be saved and the new context must be restored. This consumes costly resources in the constrained

sensor node. An example of such an operating system for sensor nodes is MANTIS [7].

Currently it is assumed that an event driven operating system is more suitable for sensor networks because less resources

are needed resulting in a more energy-efficient system. However, the exact figures are unknown and therefore determined and

presented in this paper. On the other hand it is claimed that a multi-threaded operating system has superior event processing

capabilities. Again, an in depth analysis is currently missing and is therefore shown in the paper. For comparison purposes,

the event-based system TinyOS and the multi-threaded system MANTIS executing the same sensor network applications on the

DSYS25 sensor platform are used [28]. The contributions of the paper can be summarized as follows:

1) Comparison of the memory requirements of the event-based TinyOS and multi-threaded MANTIS operating system.

2) Comparison of the event processing capabilities of the event-based TinyOS and multi-threaded MANTIS operating system.

3) Comparison of the energy consumption of the event-based TinyOS and multi-threaded MANTIS operating system.

The results presented in the paper can be used to decide which type of operating system should be used for a specific sensor

network application. The results also show that for a number of application areas a thread-based sensor network operating

1In practice, the context switching is minimized, not eliminated. A context switch is only necessary if an interrupt has to be serviced. In this case, the
current task execution is stopped, context is saved and the interrupt is served before resuming task execution.
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system is actually feasible and even preferable.

The rest of the paper is organized as follows. The next section describes related work in the research area of operating

systems for sensor networks. Section III gives an overview of the operating systems TinyOS and MANTIS. Section IV describes

the sensor platform, application scenarios and their implementation as used for the comparative experiments. Sections V,VII

and VI present the experimental comparison of the operating systems. Section VIII concludes the paper.

II. RELATED WORK

Historically, there has been much debate on whether an event-based or multi-threaded architecture is more efficient. To decide

which operating system architecture should be used, the specific application environment of interest has to be considered as

each application environment dictates very specific constraints. Results obtained for one application environment are normally

not directly applicable to another environment. This paper investigates the performance2 issues of operating systems running a

range of sensor network applications and therefore the focus of this section is on related work taking application performance

into account.

No work exists that presents a comprehensive comparison of event-based and multi-thread sensor network operating systems

taking event processing, energy consumption and memory usage into account. The lack of such a study is the main motivation

for the work presented in this paper. Existing work targets only a subset of aspects investigated in this paper. For example

papers analyzing or describing one specific operating system (e.g. [9], [13], [3], [19], [20]), or publications comparing only

one aspect (e.g. memory usage in [13]). As each single existing analysis is based on different assumptions and experimental

setups, it is not possible to extract an objective comparison. For an objective comparison of the operating systems, a complete

study presented as in this paper, is required.

As previously mentioned, the choice of operating system design has an impact on the way an application is programmed.

In [4] the event-based system CONTIKI [8] uses a programming concept called “proto-threads” which allows the programmer

to develop a program using a multi-threaded programming syntax. It is argued that an event-based system is more power

efficient but that programming concurrent (sensor network) applications with threads as opposed to event handlers is easier

for the programmer. The proto-threads in CONTIKI allow a combination of both benefits. However, an objective performance

comparison of an event-based and multi-threaded system is not provided.

In [16] it is argued that TinyOS, in contrast to MANTIS, has a problem with multiplexing long running tasks and short

running tasks. However, an in-depth analysis - an analytical evaluation or by measurement - of the task handling problem is

not given. It is argued that both operating systems should be combined to overcome the existing problems. As a solution,

the complete TinyOS operating system is executed as a thread in MANTIS. If tasks in TinyOS need to be able to preempt

other tasks, they can be executed in a separate MANTIS thread. Very similar earlier work [17] uses the AvrX [18] as a

multi-threaded extension of the TinyOS scheduler. In this work, the event processing capabilities of the basic TinyOS and the

modified AvrX extended TinyOS are investigated (a very similar experimental setup to the setup described in Section IV is

2In this paper the performance of sensor network operating system, refers not only system responsiveness, but energy conservation and memory usage also.
Sensor network nodes have extremely limited memory constraints and power reserves. Thus application performance will also rely on low power operation
and memory efficient applications for robust operation.
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used for evaluation). However, an analysis of other parameters such as power consumption and memory usage is omitted. The

differences of a generic thread-based system are also not investigated. In summary, the research focus of [16] and [17], is to

integrate multi-threaded features in TinyOS.

In [11] TinyOS is compared with eCos, an embedded multi-threaded operating system. eCos is not specifically a sensor

network operating system as many of the core operating features are designed for more complex embedded processors. The

paper does evaluate both memory, processing performance and power efficiency. For processing performance the number of

clock cycles required to process kernel functions are summed up, but actual application performance is not investigated. The

power performance is compared theoretically based on the memory requirements of each operating system, but no investigation

into operating system power-management is analyzed in this paper.

[14] evaluates the performance of a number of sensor network operating systems, NanoQ Plus, SOS, MANTIS, and TinyOS. It

is argued that NanoQ Plus provides better processing performance based on the duration of two memory operations, specifically

memset and memcpy. However this experiment cannot provide a realistic evaluation of operating system performance as the

evaluated memory operations are implemented in a software library common to SOS, MANTIS and TinyOS. Performance

should therefore not be expected to significantly differ between the evaluated operating systems.

There is a lot of research into multi-threaded and event-based sensor network operating systems. Multi-threaded operating

systems are generally perceived to be more responsive, while event-based operating systems are perceived to be more energy-

efficient. To our knowledge, this is the first work that provides concrete data to determine the effectiveness of both an event-based

and a multi-threaded operating system in a range of application scenarios.

III. SENSOR NODE OPERATING SYSTEMS

Two different sensor network operating system types are currently considered: event driven and multi-threaded. To compare

both operating system concepts, a well known and widely used implementation of each was selected, namely TinyOS and

MANTIS. The following paragraphs describe the basic functionality of each operating system, especially regarding power

consumption and event processing which are the parameters of interest in our study. It has to be noted that the terms event,

task and thread are used differently within the literature describing TinyOS and MANTIS. Thus, definitions are given below

to avoid confusion:

Event: An environmental occurrence that needs processing.

Interrupt: A hardware interrupt triggered by an event.

Event-Handler: A system function, invoked in response to an interrupt.

TinyOS Task: A deferred procedure, usually triggered by an event-handler.

MANTIS Thread: A portion of the MANTIS OS that can run independently of, and concurrently with, other portions of the

OS, typically invoked in response to an interrupt.
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void TOSH_run_task() {
while (TOSH_run_next_task());
TOSH_sleep();

}

implementation {
task void do(){
};
command void X(){
};
event void Y(){
};

}

a) Scheduler b) Component

Fig. 1. TinyOS

A. TinyOS

As one of the first operating systems specifically designed for wireless sensor networks, TinyOS was faced with the challenge

of providing a common software platform without dominating the limited processors resources3. The authors felt that an event

driven light-weight kernel was the best solution to handling a “large number of concurrent flows and juggle numerous out-

standing events” [2].

The operating system and specialized applications are written in the programming language nesC and are organized in

self-contained components (see Fig. 1 b)). Components consist of interfaces in the form of command and event functions.

Components are assembled together, connecting interfaces used by components to interfaces provided by others, forming a

customized sensor application. The resulting component architecture facilitates event-based processing by implementing event-

handlers and TinyOS tasks. TinyOS tasks are deferred function calls and are placed in a simple FIFO task-queue for execution

(see Fig. 1 a)). TinyOS tasks are taken sequentially from the queue and are run to completion. Once running, the TinyOS task

can not be interrupted (preempted) by another TinyOS task. Event-handlers are triggered in response to a hardware interrupt

and are able to preempt the execution of a currently running TinyOS task. Event-handlers normally contain only the absolute

necessary code to process the event. Further, non-time critical processing is performed within a TinyOS task that is created by

the event handler. After all TinyOS tasks in the task queue are executed, the TinyOS system enters a sleep state to conserve

energy. The sleep state is terminated if an interrupt occurs.

It is possible to modify and extend the simple TinyOS scheduler to improve system performance. This issue is addressed

in the next impending release of TinyOS. TinyOS 2.0 is due to be released with a more flexible TinyOS task structure that

should enable more complex scheduling policies such as EDF, within the existing event-based paradigm[22].

Functionality in TinyOS is distributed among many components. Each functionality (e.g. sensing or packet forwarding) is

normally divided into a series of sub-steps so that the different steps of a program can be mapped in the TinyOS task, command

and event functions of the components. Thus, multiplexing among several different functions of the OS can be achieved by

multiplexing the (atomic) sub-steps. When used correctly, this approach leads to an efficient system structure. On the other

hand it is difficult for the programmer to achieve a proper division of functionality. The programmer must be familiar with

the internal affairs of all low level components in the system. Additionally, it can be difficult for some programmers to handle

functionality in such sub-steps.

3Currently TinyOS is capable of running on processors as small as the PIC 16F, which has just 4KB Programmable Flash, 384B of SRAM [26].
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PUSH_THREAD_STACK();
// idle thread’s existence guarantees we’ll get something
for(i=0; i<NUM_THREAD_PRIORITIES; i++){
//get next thread with this priority level
_current_thread = mos_tlist_remove(&readyQ[d_index]);
if(_current_thread != NULL)
break;
}
_current_thread->state = RUNNING;

POP_THREAD_STACK();

mos_thread_new(threadA,128, PRIORITY_HIGH);
threadA{
while(running){
...
//wait on external event
mos_semaphore_wait(...)
....

}

a) Scheduler b) Thread

Fig. 2. MANTIS

B. MANTIS

The MANTIS OS is a light-weight multi-threaded operating system capable of multi-tasking processes on energy constrained

distributed sensor networks.

The threaded architecture facilitates thread-preemption, allowing the operating system to switch active threads without waiting

for the running process to finish execution. As a result, the operating system can respond faster to critical events. The kernel

is serviced by a priority-based round robin scheduler (see Fig. 2 a)), in which all MANTIS threads are scheduled according to

one of five priority levels. Priority scheduling allows the developer to have discrete control over how the MANTIS threads will

execute, as the kernel ensures all high priority MANTIS threads are executed first, before beginning any lower priority MANTIS

threads. In order to solve the problem of long running MANTIS threads blocking other equal priority threads MANTIS applies

preemptive scheduling using threads according to a predefined time-slice as per the round-robin algorithm.

Like all multi-threaded operating systems, MANTIS was developed with a complement of built-in memory protection

techniques such as binary and counting semaphores to manage and coordinate threads. MANTIS threads are implemented in

the MANTIS kernel with a static thread table, the thread table will contain, among other information, the priority, the state

of each MANTIS thread and a pointer to the thread stack. Typically only 12 MANTIS threads can be either queued or active

at any one time and will consume only 120 bytes of SRAM [1]. The heap space of each thread is managed by the kernel

memory manager. The memory manager assigns thread space according to a best-fit policy. Thread heaps will, by default, be

assigned in the lowest possible memory address spaces, ensuring that a thread heap space doesn’t collide with the processor

heap.

If no threads are scheduled for execution and no events have to be processed, the system can enter a sleep mode. This is

done using a so called idle-task. The idle-task function determines to what level of low power state the CPU should transition.

If there is a MANTIS thread waiting on an peripheral resource then the CPU will enter into Idle mode, however if all threads

are sleeping, the CPU will be put into a sleep state to conserve more energy.

By defining processes as threads (see Fig. 2 b)), algorithms can be represented in a more intuitive sequential fashion as

processes don’t need to be segmented into specific states when waiting for a system event to occur. Compared to TinyOS,

functionality is multiplexed by the OS, not by the programmer. Thus, MANTIS has the potential of being easier for programmers

to use.
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IV. EVALUATION SETUP

For the evaluation of event processing capabilities, power consumption patterns and memory usage of TinyOS and MANTIS,

both operating systems were ported to the same sensor platform, the DSYS25 [28]. Additionally, measurement facilities are

integrated in both operating systems which allow us to observe the required parameters without altering the system behavior. To

actually perform the comparative evaluation, an abstract application scenario is defined and implemented on the sensor nodes.

This abstract application scenario corresponds to a variety of real-world sensor network deployments. Thus, it is ensured that

the evaluation covers a broad spectrum of application scenarios and not only one particular use-case.

In the following paragraphs, the selected abstract application scenario is motivated and described. Thereafter, the DSYS25

sensor-node platform, the ported operating systems and the measurement hooks are explained. This evaluation setup is used

for the experiments described in the remaining sections of the paper.

A. Application Scenarios

To evaluate operating system performance, an application context must be defined. Subsequently, the operating system

performance of a sensor node supporting the given scenario can be investigated. Obviously, to obtain useful results, it is

important that the investigated application scenario corresponds to real-world deployment and usage scenarios of wireless

sensor networks.

In many cases, a sensor network is used to collect periodically obtained measurement data at a central point (sink or base-

station) for further analysis. The sensor nodes in such a network perform two major tasks. Sensor nodes perform the sensing

task and they are used to forward the gathered data to the sink. If the sink is not in direct radio range of a node, other nodes

closer to the sink are used to forward data. The execution time of the sensing task will depend on the nature of the physical

phenomenon monitored and the complexity of the algorithm used to analyze it. Therefore, the position of the node in such a

network and the complexity of the sensing task define the operating system load of the sensor node. The complexity of the

sensing task is varied in the experiments and hence the application scenario is considered abstract, as it can be compared with

many different real-world deployment scenarios.

The complexity of the sensing operation depends on the phenomenon monitored, the sensor device used and the data pre-

processing required. As a result, the operating system can be stressed very differently. If, for example, an ATMEGA128 CPU

with a processing speed of 4Mhz is considered (a currently popular choice for sensor nodes), a simple temperature sensing

task (processed through the Analogue to Digital Converter) can be performed in less than 1ms[23]4. In this case only a 16bit

value has to be transferred from the sensing device to the CPU. If the same device is used in conjunction with a camera, image

processing might take some time before a decision is made. Depending on camera resolution and image processing performed,

a sensing task can easily take more than 100ms [21]. Other application examples documented in the literature are situated in

between these values. For example if a sensor value needs to be cryptographically secured before transmission, the sensing

task is prolonged by 5ms [24]. Thus, combined with a simple sensor, a sensing task can be around 10ms. Note that a long

4This calculation is based on the amount of processing time necessary to process an analog sensor reading taken from the Atmega ADC. The ADC is
typically used to process signals from analog sensors such as a temperature sensor.
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Fig. 3. Binary Tree

sensing task can be split-up into several sub-tasks. However, in practice this is often not possible due to two factors. First,

many data-processing algorithms are difficult or impossible to be split into separate tasks. For example some image processing

algorithms cannot be divided, as explained in [21]. Second, it is difficult from a programming (or programmers) perspective

to handle and manage such divided entities. The experimental evaluation spans the task sizes described (1ms...100ms). Thus,

the abstract application scenario corresponds to a wide range of real world application scenarios.

The following paragraphs give an exact specification of the abstract application scenario used, which is defined by its

topology, traffic pattern and sensing pattern. The application scenario is then implemented on the DSYS25 sensor platform for

evaluation.

Topology: The sensor network is used to forward sensor data towards a single base-station in the network. It is assumed

that a tree topology is formed in the network. To simplify the evaluation process, a binary tree shown in Fig. 3 is assumed.

Depending on the position n in the tree, a sensor node si might process varying amounts of packets. Leaf nodes put less

demand on the processor. Nodes closer to the root are more involved in packet forwarding and these nodes have to multiplex

packet forwarding operations with their sensing operations. The position in the tree has therefore - besides other parameters -

a significant impact on the event processing and energy consumption properties of the node.

Sensing Pattern: A homogeneous activity in the sensor field is assumed for the abstract application scenario. Each sensor

gathers data with a fixed frequency fs. Thus, every ts = 1/fs a sensing task of the duration ls has to be processed. As

mentioned, the duration ls is variable between ls = 4000 and ls = 400000 clock cycles depending on the type of sensing task

under consideration (Which corresponds to 1ms/100ms on a 4MHz CPU).

Traffic Pattern: Depending on the position n of a node si in the tree, varying amounts of forwarding tasks have to be

performed. It is assumed that no time synchronization among the sensors in the network exist. Thus, even if each sensor

produces data with a fixed frequency, data forwarding tasks are not created at fixed points in time. The arrival rate λn of

packets at a node at tree-level n is modeled as a Poisson process. As the packet forwarding activity is related to the sensing

activity in the field, λn is given by:

λn = (2n − 1) · fs (1)

This equation is a simplification; queuing effects and losses are neglected, but nevertheless provides an accurate method to

scale the processing performance requirements of a sensor network application. It is assumed that the duration (complexity)

lp of the packet forwarding task, is lp = 4000 clock cycles. This is the effort necessary to read a packet from the transceiver,

perform routing and re-send the packet over the transceiver. This is a common processing time and was obtained analyzing
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Task Duration Clock cycles Frequency
Forwarding Fixed:

1ms
Fixed:

lp = 4000
Variable, Poisson:
λn = (2n − 1) · f
n ∈

1, 2, 3, 4, 5, 6, 7, 8
Sensing Variable:

100ms, 75ms
50ms, 10ms
5ms, 1ms

Variable:
ls = 400000, ls = 300000,
ls = 200000, ls = 40000
ls = 20000, ls = 4000

Fixed, Periodic:
fs = 1 1

s

TABLE I
EVALUATION SETUP

Fig. 4. The DSYS25 Sensor Platform

the DSYS25 sensor nodes using the Nordic radio [25].

Summary: The abstract scenario described above is used in Section V, Section VI and Section VII to compare event

processing capabilities, energy consumption and memory usage of the two operating systems. For the evaluation, a single

DSYS25 sensor node is fitted with the operating systems under investigation and the packet forwarding tasks and sensing tasks

are generated such that the nodes activity corresponds to a place in the tree topology. The parameters defining the abstract

application are set for all following experiments according to the values or ranges listed in Table I (Set for the 4MHz CPU

used in the DSYS25 platform).

B. Evaluation Platform

DSYS25 is a sensor platform developed as part of the D-Systems project at University College Cork [28] and the Tyndall

Institute. The DSYS25 module (see Fig. 4) comprises of an Atmel AVR ATMEGA 128 micro-controller and a Nordic nRF2401

transceiver. Additional functionality, such as sensing, is added by stacking layers to the basic unit. A stackable connector system

makes the electrical and mechanical interconnections between layers. The chosen transceiver performs communication tasks

such as address and CRC computation, freeing the micro-controller from these activities. Thus the micro-controller can be

either used for processing other tasks or can be sent to an energy saving sleep mode. The transceiver is also able to transmit

data at high data rates (up to 1Mbps). By transmitting faster, the radio can quickly return to a power saving mode and therefore

energy consumption is reduced.

C. OS Ports and Measurement Facilities

The goal of the study is a comparison of operating system concepts. To provide a fair comparison our experiment hinges

on a number of important setup/experimental parameters.
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Firstly, conceptual differences rather than functional differences between the two operating systems must be measured. For

example the networking stack used in TinyOS and MANTIS provide different functionality (e.g MAC protocols, duty cycles

....). Thus, a direct comparison of the operating systems might be caused by functionality unrelated to the operating system. To

avoid this problem, the operating systems are reduced to their bare minimum and simple components emulating the behavior

of the aforementioned abstract applications are implemented. This is achieved using a modified makefile and removing all

non-essential, methods and global variables from the compiled operating system image.

Secondly, both of the aforementioned abstract applications must be semantically exact. In compiling the abstract applications,

the task duration can be skewed by the different compiling process used in the TinyOS compiler compared to MANTIS. To

ensure both applications on both operating systems perform tasks with the exact same number of clock cycles, we use the

NOOP (no-operation) directive, a processor directive that takes exactly one clock cycle to complete irrespective of the operating

systems processing context. Finally in measuring the performance of each application it is imperative that the performance

of each abstract application is not hindered. The experiment revolves around a setup in which tasks are dispatched up until

the end time of the experiment. Performance is evaluated as to how timely each task is completed with respect to this clock.

However in measuring clock cycles we take away processing resources from the tasks and would therefore provide imprecise

measurements. This overhead is carefully calculated with an additional hardware timer and subtracted from the results.

TinyOS: In case of TinyOS, the abstract application is implemented using nesC, the programming language used in TinyOS.

The packet processing task and the sensing tasks are initiated by an interrupt. For the experiment, the interrupt is not generated

by the transceiver or sensor hardware, instead, the interrupt is generated by a timer. The timer intervals are configured by the

parameters given for the abstract application (λn, fs, see Table I) . Within the interrupt routine for the transceiver, a TinyOS

task for packet forwarding is created and queued in the task list. The size of the packet forwarding task lp is set to 4000 clock

cycles (implemented as assembler NOOP operations, to ensure cycle accurate timings). In the interrupt routine of the sensor,

the sensing task is created. The sensing task has the size (complexity) ls defined by the application scenario.

The TinyOS is modified such that essential parameters can be measured during the experiment. The task creation time in the

interrupt routine is recorded. When a task finishes, the task duration from creation to completion is known. Additionally, idle

times of the CPU are recorded. The time from the completion of the last task to the occurrence of a new event is measured.

The records of these two parameters - task execution time and system idle time - enables us to analyze event processing and

power consumption capabilities of the operating system.

MANTIS: The thread-based architecture of the MANTIS operating system requires a syntactically different implementation

of the abstract application. The sensing task and the packet forwarding task are implemented as MANTIS threads. Again,

the interrupts initiating packet processing and sensing are generated by a timer, not the hardware. The timer intervals are

configured by the parameters given for the abstract application (λn, fs, see Table I) . Following an interrupt, the appropriate

interrupt routine is called. Within the interrupt routine, the necessary thread for processing is activated. MANTIS allows for

a prioritization of threads. The packet processing thread is configured to have a higher priority than the sensing thread. The

size of the packet forwarding thread lp is set to 4000 clock cycles The sensing thread has the size (complexity) ls defined by

the application scenario. When a thread completes execution, it is set to sleep and waits to be woken again by the appropriate
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Operating System Programmable Flash Memory (kB) Required RAM (B)
TinyOS 9 283
MANTIS 13.1 287

TABLE II
MEMORY USAGE

interrupt.

The time from waking a thread until its completion is measured during the experiments. Thus, an analysis of the event-

processing capabilities of MANTIS is possible. If no thread is active, MANTIS activates an idle thread. The idle thread is

used to implement the power management capabilities of the operating system. The idle thread decides which power saving

mode has to be activated. Power saving is terminated when an interrupt occurs. The time from activating the idle thread until

an interrupt occurs is measured. Thus, the power management capabilities of MANTIS can be investigated.

50 experiment samples were conducted for each application scenario. The following Sections V, VI, VII detail how each

performance result was measured and the findings and relevance of these results.

V. MEMORY USAGE

The memory footprint of the operating system has to be as small as possible. Additional memory increases the cost of the

sensor nodes and the more memory is integrated in the hardware, the more energy is consumed by the system. In practice, not

each reduction of memory requirements leads to a cheaper and more energy-efficient system. A sensor built out of standard

components normally uses a chip combining CPU and memory. Whether the system uses the available memory or not has

little impact on the power consumption of the chip. Thus, only if memory (and CPU) requirements can be reduced to a point

where a simpler CPU/memory chip is available can improvements be expected.

A. Measuring memory

In order to determine operating system memory usage, we use the GNU project binary utility avr-size [6]. Avr-size is a

flash image reader that outputs the program size, and the initialized and uninitialized memory size.

B. TinyOS

The TinyOS operating system core consists of an absolute minimum of functionality. Simple algorithms such as the FIFO

queuing algorithm are used to implement core TinyOS features such as the task scheduler, in order to maintain compatibility

with very limited processors. A structure is provided to multiplex many timed events with a single hardware timer (see

Section III). All additional functionality is provided by the application code in the form of a component-based architecture.

The TinyOS core elements alone do not form a useful system. Thus, it is necessary to analyze the memory usage of the TinyOS

operation system combined with specific application code. Operating system and application code are compiled into a single

binary file which is executed on the sensor node. Depending on the application used, the executable requires an extremely

small memory space. The abstract application scenario presented in Section IV is used for the evaluation.
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Memory requirements of the OS/Application are further reduced by a specialized custom compiler (nesC) provided with

the TinyOS framework. The nesC compiler exploits the component-based architecture to include only components required

by the application’s wiring schema in the compiled program image. The nesC compiler can further deduce and remove any

unused component functions within the application configuration [10]. A TinyOS program image therefore contains virtually

no program code unrelated to the target application.

The necessary memory space for TinyOS providing the abstract application functionality is shown in Table II. The

programmable flash memory, represents the amount of space to store the application code. The RAM field represents the

amount of statically compiled memory/variables required by the application at runtime. Both applications will require more

RAM to assign memory space for local variables which are dynamically allocated at run-time5.

C. MANTIS

MANTIS OS provides more core functionality. The operating system core must provide functionality to handle multiple

threads. Furthermore, preemption and context switching must be implemented within the operating system core. This includes

semaphores, timer structures and memory management. Semaphores must be implemented to ensure that critical sections of

code cannot be used by multiple threads at the same time. A memory manager must be set up to dynamically assign S-RAM

address space during thread initialization. Three different hardware timers are required to implement time-slicing, general

purpose timers and a sleep timer. As such the complexity of the MANTIS kernel requires considerable overhead in code

size, memory requirements and processor complexity. An application is implemented as a set of MANTIS threads. Kernel and

application are compiled into one binary file executed on the CPU. To be able to compare the memory footprint of MANTIS

with TinyOS, the abstract application scenario is used for evaluation.

The MANTIS OS framework does not provide any tools to optimise memory size at compile time. Thus, it is left to the

programmer to decide which operating system elements should be included in the binary. In practice, it is very difficult to

determine which elements are necessary and a tool - comparable to nesC in TinyOS - would be very useful.

The necessary memory space for MANTIS to provide the abstract application functionality is shown in Table II.

D. Discussion and Findings

The initial build of each operating system highlights the huge memory savings gained by using TinyOS in combination

with the nesC compiler. By compiling only the necessary functionality the nesC compiler can build extremely optimized

binary images. A direct memory comparison between the operating systems is not fair if no optimization is performed for

MANTIS. Thus, the MANTIS operating system was optimized manually for the experiment by removing all non-essential

functionality. The results are shown in Table II. With this optimization, the MANTIS operating system takes nearly a third

extra programmable memory space the TinyOS operating system. Both operating systems statically allocate almost equal

amounts of RAM, however both applications will require more memory to cater for the stack (local/non static memory).

Furthermore the MANTIS scheduler dynamically allocates a memory pool to store the stack and processor registers for each

5By dynamic memory, we refer to memory assigned by a stack, not the more common term of heap memory allocation.
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Fig. 5. Queuing Schedules

thread. If there is insufficient memory to store both the threads and stack, then during the course of execution, memory will

be corrupted and the application will fail.

The experimental results show that an optimization method, comparable to the nesC features in TinyOS, would be desirable

for the MANTIS operating system. If a standard Atmel 128 processor is used to realize such a system, the applications realized

with either operating system can be accommodated easily in the memory6. If a more constrained platform is selected, such as

the PIC 16 micro processor[], a TinyOS implementation might be the only option to realize such a system .

VI. EVENT PROCESSING

Many monitoring tasks in sensor networks require a responsive network reaction as sensing data has to be reported in a

timely fashion. If the operating system of a sensor node is not capable of quickly responding to events, such time-critical

applications are difficult to build. Furthermore, it is desirable to have sensor nodes that react to events in a deterministic and

constant way. Sensor nodes with a predictable and constant performance can be used as building blocks for sensor network

applications that require more deterministic network behavior.

This section investigates the event processing capabilities of the TinyOS and MANTIS operating system while supporting

the abstract application scenario (see Section IV-A). The average processing time required to handle the packet forwarding task

in the abstract application scenario is investigated. Additionally, the standard deviation of this processing time is investigated

to determine the stability of processing times.

A. TinyOS

The simple TinyOS scheduler schedules tasks to run atomically with a FIFO queuing algorithm. Tasks will execute atomically

with respect to one another, and can only be preempted by an asynchronous event (an event spawned from a hardware interrupt).

6The Atmega 128 is capable of supporting 128kB of programmable flash memory, and 4096B of flash memory [23].
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The scheduling algorithm is very simple, and it can therefore schedule tasks with a minimum processing overhead. By scheduling

tasks to run atomically, TinyOS precludes any potential deadlock errors or any potential inter-task race conditions, greatly

simplifying the task of programming the application. However, atomic/non-preemptive task schedules can result in non-ideal

situations. This is demonstrated in Figure5. A long TinyOS task (e.g. a sensing task) is occupying the CPU. Periodic interrupts

occur that signal the arrival of packets. The packets are read from the radio in the interrupt routine (interrupting the long TinyOS

task) and a TinyOS task for the packet processing is created to be processed after the long TinyOS task. Packet processing is

deferred in a non-predictable way and deadlines regarding packet processing can be missed. Thus, if an application requires

more precise control of the task execution schedule, the TinyOS scheduler is not suitable.

The task-blocking problem can be tackled with a number of different solutions. The functionality of the high-priority tasks

can always be programmed into an interrupt handler. However code executed in an interrupt handler will block all other activity

and should therefore be used sparingly. A more viable solution would be to segment the long sensing task into a series of

sub-tasks, such that higher priority TinyOS tasks will not be blocked for the full duration of the long task execution time.

However, as described in Section IV-A the segmentation of processing functions is often not possible or simply not done by

the programmer.

B. MANTIS

In the multi-threaded MANTIS operating system, all processes are defined as individual MANTIS threads which can be

preempted at any time during the course of execution. MANTIS thread preemption provides a significant scheduling advantage,

as all higher priority tasks can be executed on demand. Thus, it is easier to ensure that deadlines of high priority tasks are met.

However, MANTIS thread preemption facilitates extra processing cost, as the MANTIS scheduler must swap active/idle threads

in addition to managing a memory pool to store the state of inactive threads. These extra costs add to the overall processing

time needed to realize the task functionality. In the MANTIS operating system the processor will consume approximately 1200

clock cycles from the time the interrupt occurs til the time the tasks starts executing. The significance of this overhead depends

on the length of each process and the number of context switches.

An example of the MANTIS operation mode is shown in Figure 5. A long sensing task, implemented as low priority

MANTIS thread is running on the system. Packets arrive at the radio triggering interrupts. An interrupt causes a high priority

MANTIS thread to be activated for packet forwarding. As context switch time and packet forwarding have deterministic time

bounds, deadlines regarding packet processing can be met.

C. Measuring Event Processing Capabilities

To ascertain the operating system responsiveness, experiments with the network model and experiment setup shown in

Section IV-A are carried out. Two tasks, a sensing task and a packet processing task are executed concurrently on the same

processor. In this model, the (lengthily) sensing task and the packet-processing task compete for CPU resources on the sensor

node. It is assumed that the packet-processing task within the nodes has priority so that deadlines regarding packet forwarding

can be met. Thus, in the MANTIS implementation, the packet processing task has a higher priority than the sensing task. In

the TinyOS implementation, no prioritization is implemented as this feature is not provided by the operating system.
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Fig. 6. Average packet processing time Et , scheduled with a sensing task of execution time ls.

Task Execution Time: To characterize processing performance of the operating system, the average task execution time Et

of the packet forwarding task, is measured. During the experiment, J number of packet processing times ej are recorded. To

do so, the task start time estart and the task completion time estop are measured and the packet processing time is recorded

as e = estop − estart. In case TinyOS is used, estop is the time when the packet processing task is completed and is removed

from the task queue. When MANTIS is used, estop is the time when the packet processing thread finishes and is sent into the

wait state. In both cases, the start time estart is recorded in the interrupt routine when the packet processing is initiated. The

average task execution time Et is calculated at the end of the experiment as:

Et =

∑

ej

J
(2)

In order to investigate how deterministic the packet processing time is, the standard deviation of the average execution time

is also calculated.

D. Evaluation

In the experiment, the average task execution time Et is determined for TinyOS and MANTIS supporting the abstract

application scenario. The average task execution time Et is shown in Fig. 6.

Where MANTIS is used, it can be observed that the average packet processing time is independent of the sensing task

execution time. Furthermore, Et is also very independent from the position n of the node in the tree. Only under heavy load,

the average processing time slightly increases. This is due to the fact that under heavy load packet forwarding tasks have to

be queued (see Fig. 6 a)).

Where TinyOS is used, the average processing time for the packet forwarding task Et depends on the length of the sensing ls

of the sensing task. In addition, under heavy load the queuing effects of the packet forwarding tasks also contribute somewhat

to the average processing time (see Fig. 6 b)).

The thread prioritization capability of MANTIS is clearly visible in the experiment results. Packet processing times are
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Fig. 7. Standard deviation of packet processing time Et, scheduled with a sensing task of execution time ls = 75ms.
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Fig. 8. Standard deviation of the average packet processing time Et, scheduled with a sensing task of execution time ls = 1ms.

independent of the concurrently executed and lower priority sensing task. In TinyOS, sensing and packet forwarding task

delays are coupled, and the influence of the sensing activity on the packet forwarding activity is clearly visible.

In the case of small sensing tasks with ls ≤ 5ms, TinyOS outperforms MANTIS. MANTIS has to perform a context switch

(either from the idle task or a running sensing task) and this overhead adds to the average execution time Et.

Fig. 7 shows the standard deviation of the packet forwarding task execution time Et for a sensing task of length ls = 75ms

(The graphs for sensing tasks of other sizes can be found in the Appendix of this paper). In the case where MANTIS is used,

the standard deviation in the task processing time is very low. The standard deviation is noticed only for a high system load.

This is caused by packets queuing and waiting to be processed. If TinyOS is used, a huge variation in the processing times is

observed. This variation increases considerably with the size of the sensing task. This is due to the fact that a packet processing

task in TinyOS has to wait for a sensing task to finish. However, for small sensing tasks, as shown in Figure. 8, the standard

deviation of Et is very small.
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E. Discussion and Findings

It is evident that MANTIS provides better stability and predictability of packet processing time than TinyOS. Additionally,

MANTIS decouples the packet processing time from the sensing time delay.

However, if small sensing tasks are used, TinyOS is able to provide a similar stability in the packet processing times. In

fact, in the case of small processing times, TinyOS is capable of processing incoming traffic faster as there is no operating

system overhead in the form of context switches.

If a sensor network with a controlled and predictable network performance has to be implemented, a deterministic packet

forwarding behavior of sensor nodes is required. For such an application, the MANTIS operating system would generally be

more suitable, especially if processing intensive sensing tasks have to be supported concurrently. However, in the particular

case of small sensing tasks, TinyOS is the better choice. The same stability in packet processing time can be achieved while

packet processing requires less time. Thus, a higher throughput can be achieved.

Our findings regarding event processing of event-based and multi-threaded sensor network operating systems can be

summarized as follows:

• A multi-threaded system is preferred if long (sensing) tasks have to be supported concurrently with the packet forwarding

tasks.

• An event-based system is preferred if short (sensing) tasks have to be supported concurrently with the packet forwarding

tasks.

While these conclusions are not surprising, they nevertheless provide quantitative results on which to support the choice of

operating system.

VII. ENERGY CONSUMPTION

The lifetime of a sensor network is related to the energy consumption of the sensor nodes. Therefore, the task of reducing

a sensor node’s power consumption is of paramount importance. Operating systems for sensor networks achieve low power

consumption rates by exploiting processor idle times. Available idle time can be used to put the CPU in an energy-efficient

power saving mode. Depending on the processor used, different power saving modes might be available. The different power

saving modes vary in the time and energy necessary to enter and leave the mode and the power spent in the particular mode.

Thus, to determine the energy efficiency of sensor network operating systems, it is necessary to investigate the available idle

times during system operation.

This Section investigates the available idle time in TinyOS and MANTIS while supporting the abstract application scenario

(see Section IV-A). First, the ratio between idle and active time is determined as this number dictates how much energy can

possibly be saved. Second, the distribution of idle time periods is analyzed as the length and variation of available idle periods

determines which power saving mode can be used by the processor.

A. TinyOS

TinyOS executes all pending tasks sequentially (See Section III). Only when interrupts need to be processed, is the execution

of the current task halted and a (hardware supported) context switch to the appropriate interrupt routine is performed. Thus,
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the TinyOS operating system spends almost all processing activity in the execution of the application functionality. Little

processing effort is spent on operating system related functionality.

As soon as the task queue is emptied and no events have to be processed, the TOSH_sleep() routine is called. In this routine

it can be decided how the CPU should spend the available idle time. More specifically, it can be decided which power saving

mode will be used. Here it is theoretically possible to use an algorithm to predict how long the idle period will be and to select

the power saving mode accordingly. Such an algorithm might take application layer knowledge into consideration. However,

the current implementation of TinyOS only considers the simplest available power saving mode and optimization options are

not exploited.

B. MANTIS

The drawback of a multi-threaded operating system, is that a considerable part of the CPU processing time is needed for

the organization of the system itself. A context switch between different threads requires the operating system to save the

context information. This operating system overhead can not be spent for power efficient sleep times. The question is how

much overhead has to be allocated for the operating system itself.

If no MANTIS threads are scheduled for execution and no events have to be processed, the system executes a so-called idle-

task. The function of the idle-task is to determine which power saving mode should be activated. For this decision, the idle-task

uses thread state information. If all threads are waiting for a service to respond, i.e the radio to return an acknowledgment

message, then it is in a THREAD_STATE_IDLE and the idle-task will activate a CPU idle mode as soon as all threads

finish processing. If however, all threads are in a THREAD_STATE_SLEEP then there are no threads waiting on a service to

complete, and the CPU will enter a sleep mode once all threads finish processing. This simple policy is used as it is assumed

that a thread in THREAD_STATE_IDLE will become active very soon and no long idle period can be expected. The idle

mode can be activated without a transition phase but is not very energy-efficient. The sleep mode has a transition phase before

the actual power saving starts. This simple policy helps to optimize power consumption and depends very much on the type

and specification of the CPU used. However, a better policy might be available if, for example, application layer knowledge

is used to predict idle times.

C. Measuring Power Efficiency

To measure the power efficiency of each operating system, we use the abstract application scenario in Section IV-A, to

evaluate each operating system under varying degrees of duress. Both operating system applications must process a sensing

task and a number of packet forwarding tasks. The frequency of packet forwarding tasks increases progressively as the position

of the sensor node reaches the root of the network topology, i.e. the number of child nodes increase.

In evaluating power efficiency, the aforementioned operating system specific power management policies are ignored (In

fact, only MANTIS currently implements such a policy). This study investigates the available idle times for power management

purposes, not the different power management policies available. An efficient power management policy must be tailored to

the particular CPU used and can take application layer information into account. However, the results presented can be used

to design appropriate power management strategies.
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Idle time: The first parameter measured is the percentage idle time. The percentage idle time indicates how power efficient

the system can be. The longer the idle time the more energy-efficient the system. In the experiment, the abstract application

scenario is executed by the sensor node running TinyOS or MANTIS. The duration of the experiment T and the duration ik

of k idle time periods during the experiment is recorded. i is defined as i = istop − istart . In case of TinyOS, istart is the

point in time when to TOSH_sleep() is called. In case of MANTIS, istart is defined as the point in time when the idle-task

begins execution. istop is for TinyOS and MANTIS the point in time when the system resumes operation by processing an

interrupt. All idle periods ik are summarized and the percentage idle time, It, the percent of experiment time, in which the

processor is idle, which is calculated as follows:

It =

∑

ik
T

· 100 (3)

The percentage idle time is compared with the theoretical maximal percentage idle time, Imax
k . Imax

k is calculated by taking

only application processing of the abstract application scenario into account. Thus, Imax
k represents the percent of running

time the processor would be idle for an ideal operating system which would have no operating system processing overhead.

Imax
k depends on the task sizes ls and lp of sensing and packet forwarding task, the frequency of the sensing task fs, the CPU

speed scpu and the position n of the node in the abstract application scenario. Imax
k is calculated using Equation (1):

Imax
k =

(

1 −
fs

scpu
· (ls + lp · (2n − 1))

)

· 100 (4)

The operating system overhead Io
k is calculated using Equation (3) and Equation (4):

Io
k = Imax

k − It (5)

Idle Periods: The second parameter of interest is the average length of the idle periods Ip. This parameter shows which

sleep modes a CPU could use. Long continuous idle periods allow for deep sleep modes. Again, it is necessary to record the

duration ik of all K idle time periods during the experiment. The average length of the idle period Ip is calculated as:

Ip =

∑

ik
k

(6)

The standard deviation of the idle period length is also calculated to determine the stability of the idle period lengths.

D. Evaluation

In the first experiment, the percentage idle time It is determined for TinyOS and MANTIS supporting the abstract application

scenario. The idle time It is shown in Fig. 9.

The time spent in idle mode drops for both operating systems exponentially with the increasing node position in the tree

described by the parameter n. This behavior is expected as the number of packet tasks increases accordingly (See Equation (1)).

Less obvious is the fact that the available idle time drops faster in MANTIS than in TinyOS. The fast drop in idle time is
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Fig. 9. Percentage idle time Ik for both operating systems.

caused by the context switches in the MANTIS operating system. The more packet forwarding tasks are created, the more

likely it is that a sensing task is currently running when a packet interrupt occurs. Subsequently, a context switch to the higher

prioritized forwarding task is needed.

When MANTIS is used, the length of the sensing task has a significant impact on the idle time. If TinyOS is used, the

length of the sensing task does not influence idle time that strongly. Again, the difference is down to the necessary context

switches in MANTIS. The longer the sensing task, the more likely it is that a sensing task is running when a packet arrives.

As expected, MANTIS proves to be less energy-efficient than TinyOS. However, in the case of low system activity both

systems have roughly the same energy efficiency. For example for a leaf node with n = 1 and a sensing task with the size of

ls = 1ms TinyOS is only 0.09% more energy-efficient than MANTIS. In the worst case, for a node at position n = 8 and a

sensing task with the size of ls = 1ms TinyOS is 7.6% more energy-efficient.

If TinyOS is used, the length of the sensing task has little impact on the idle time measured. This is due to the low operating

system overhead introduced by TinyOS. As previously mentioned, TinyOS spends nearly all available CPU time for application

processing, not for operating system related tasks.

The theoretical maximum available idle time Imax
k and the measured idle time for TinyOS and MANTIS with a long sensing

task of ls = 75ms is shown in Fig. 10 a) (The graphs for sensing tasks of other sizes can be found in the Appendix of the

paper). In Fig. 10 b), the resulting operating system overhead Io
k is shown. As we can see, MANTIS has an increasing overhead

with the increasing activity of the system. The TinyOS operating system overhead on the other hand is not very dependent on

the load of the system.

Figure 11 shows the average length of the idle periods Ip and the standard deviation of Ip for a short sensing task with the

length ls = 1ms (The graphs for sensing tasks of other sizes can be found in the Appendix of the paper).

MANTIS has slightly shorter idle periods as it has a higher operating system overhead. Despite this difference, both operating

systems achieve very similar sleeping periods. Also, the standard deviation in the idle period length is not very different. Thus,

both operating systems can make use of available power modes in the same way. As shown, the thread-based MANTIS operating

system does not fragment unnecessarily the available idle times. This effect however might be present in other thread-based
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operating system where a periodic context switch to a kernel-thread is performed.

E. Discussion and Findings

It can be confirmed that the multi-threaded MANTIS is not as power efficient as the event-based TinyOS operating system.

However, the difference between both operating systems under specific conditions is not very big. If the system is not loaded

(leaf node with n = 1 and a sensing task with the size of ls = 1ms) a difference of only 0.09% in idle time is measured.

Still, even if the system is in a heavy load situation (leaf node with n = 8 and a sensing task with the size of ls = 75ms)

only a 7.05% difference in the idle time is encountered. Thus, if an application is implemented where sensors are inactive for

long periods and suddenly an event is detected that leads to an activity increase in the sensor field MANTIS is comparable to

TinyOS in power efficiency. Additionally, as detailed in Section VI, MANTIS would be able to handle such bursty activity in

a more deterministic way.

The experiments also show that the idle-times are not more fragmented in MANTIS than in TinyOS. Thus, the common

argument that a multi-threaded operating system leads to high fragmentation of sleep times is proven wrong in the case of the
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MANTIS operating system. Both operating system types are able to exploit the same energy saving modes provided by the

hardware.

Our findings regarding power efficiency of event-based and multi-threaded sensor network operating systems can be

summarized as follows:

• The processing overhead resulting from a more complex threaded scheduler reduces the amount of time that a sensor

node can sleep. The reduction depends heavily on the system activity.

• A multi-threaded scheduler has little impact on how fragmented a sleep schedule is. All energy saving modes provided

by hardware can be accessed.

VIII. CONCLUSION

Most sensor network application scenarios used today are built using event-driven operating systems. The vast majority

of these deployments use the event driven (and well established) operating system TinyOS. However, alternative operating

system concepts such as the classical thread-based system exist. A well known example of a multi-threaded operating system

is MANTIS. We believe a study, as presented in this paper, is needed to decide objectively which operating system type

should be used for a particular application scenario. This decision is currently made on mainly subjective grounds for event

driven systems and TinyOS. We believe this paper presents the first objective comparison between both main operating system

concepts, taking the important performance parameters memory usage, event processing and energy usage into account. Based

on the presented study we conclude that an event driven operating system is often, but certainly not always the best choice.

Classic thread-based operating systems are of use for many sensor network application scenarios.

The next paragraph details the operating conditions that benefit from a multi-threaded operating system. Thereafter, some

real-world application scenarios are shown for which a multi-threaded system is useful. Finally, it is explained how the MANTIS

and the TinyOS operating system can be modified to minimize their specific shortcomings.

A. Results

The two operating systems were investigated by taking memory usage, event processing and energy usage into account. The

results for each parameter investigated can be summarized as follows:

Memory Usage: If memory efficiency is a primary goal of the target application then TinyOS would be the better operating

system. In the experiment, the application scenario was compiled to a binary image 4kB less in TinyOS than MANTIS. While

these memory requirements will have no impact on processors such as the Atmega 128, if the application is to be compiled

for a more cost effective but less capably processor such as the PIC16[12] then only TinyOS could be used. While both

operating systems run a very light-weight scheduler, the TinyOS scheduler is smaller in code size as it does not provide a

thread switching capability.

Event Processing: The processing time of packet forwarding tasks in the abstract application scenario depends mainly on

the complexity of the sensing task, not on network activity. This dependency can be summarized as:
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• If the sensing task is small (e.g. ls = 1ms, n = 1), MANTIS has an 17.15% longer average packet forwarding task

execution time than TinyOS. MANTIS and TinyOS have variation in the task execution time in the same order (Variation

MANTIS 0µs, Variation TinyOS 454µs).

• If the sensing task is large (e.g. ls = 75ms, n = 1) TinyOS has an 204% longer average packet forwarding task execution

time than MANTIS. TinyOS has a much higher variation in the task execution time than TinyOS (Variation MANTIS

34µs, Variation TinyOS 58ms).

As a consequence, TinyOS is the preferred operating system in the case where no long sensing task has to be supported (Or

in case the sensing task can be divided in small sub-tasks). In case long sensing tasks are executed, MANTIS would be the

preferred system to achieve a deterministic and fast packet processing. Ultimately, the application requirements for the message

forwarding performance of the network dictate which operating system can be used.

TinyOS has a high variation in the packet forwarding times as a pending packet task has to wait for a sensing task to finish.

Especially when long sensing tasks are present, this delay is visible in the variation of the forwarding times.

Energy Usage: The energy usage of nodes in the abstract application scenario depends mainly on the network activity, not

on the complexity of the sensing task. This dependency can be summarized as:

• If there is low network activity (n = 1, lS = 1ms), TinyOS has an .09% longer idle time than MANTIS. Thus, TinyOS

is more power efficient. The fragment size of idle periods is of the same order for both operating systems (Idle Time

Length for TinyOS is 499ms and Idle time for Mantis is 490ms).

• If there is low network activity (n = 8, ls = 1ms), TinyOS has an 7% longer idle time than MANTIS. Thus, TinyOS is

more power efficient. The fragment size of idle periods is in the same order for both operating systems (Idle Time Length

for TinyOS is 3.8msand Idle Time for Mantis is 3.9ms).

As a consequence, TinyOS is the preferred in all operating conditions as it is more power efficient. The MANTIS operating

system is not far behind in terms of power efficiency, especially if a low network activity is present. The more responsive

MANTIS is not as power efficient as the necessary context switches reduce the available idle time. Especially when a large

amount of network traffic is present, the context-switch overhead is prominent.

Combined View: The difference in memory usage of the two operating systems is a (nearly) static parameter and does not

depend on the particular application scenario supported. In most cases, this small difference would not be the deciding factor

in choosing one of the operating systems.

If a deterministic behavior regarding packet forwarding times is required, AND a complicated sensing task is carried out at

the same time, MANTIS would be the better choice. This has to be paid with an additional energy consumption, but in some

cases a deterministic network behavior would be preferred over a low energy consumption. If a TinyOS application requires

a long sensing task, the poor packet processing times resulting from the non-preemptive scheduler, could lead to a congested

network. This in turn would consume far more energy retransmitting lost packets.
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B. Application Scenarios

It was shown in Sections V, VI, VII that neither operating system would be optimal for all application scenarios as both

operating systems target different performance objectives. In TinyOS for example, a key design metric is focused on compiling

small application images, however the light-weight multi-threaded kernel in MANTIS is designed to provide predictable

performance for more processing intensive applications.

To measure the operating system performance for a range of applications scenarios, the experiment evaluation used a range

of sensing tasks sizes (1ms, 5ms, 10ms, 25ms, 50ms, 75ms, 100ms). These tasks times were chosen to model a spectrum

of sensor network applications. Examples of such task times can be found in Literature, for example encryption algorithms

such as TinySec can take up to 1ms to encrypt a byte of data [24] 7. A structural monitoring application presented in [29]

uses a wavelet decomposition algorithm that takes 12ms to compress vibration data readings, before transmitting data over the

network. It can be concluded from our experiment that TinyOS would provide a more efficient scheduler for processing these

applications. Such small task times achieve a better average response time and also more predictable response time in TinyOS

due to the low processing overhead of the scheduler.

Image processing algorithms used in target tracking applications would be represented by the larger sensing tasks in the

application scenario. Image processing algorithms are very processing intensive and difficult to realize on a sensor network.

In [21] an object detection algorithm whats it for is used image processing that can take up to

• 240ms on a 128x128 px image,

• 60.8 ms on 64 x 46 image,

• 16 ms on a 32 x 32 pixel image.

Scheduling a processing task of this magnitude in a non-preemptive scheduler such as in TinyOS can provide very ineffective

schedules. We see from Section VI-D that high priority tasks such as a packet forwarding task can take a further 5 ms to

process when scheduled with a 75ms Sensing task. An obvious solution is to try and segment the sensing task, so that the

high-priority task does not get delayed by the full duration of the sensing task. However in [21], the authors maintain that

“Image processing operations are typically long-running and not suitable for sequential decomposition. The

consequence of loading a sensor network node with processing the image is a significant increase in implementation

complexity ... This in turn results in reduction of performance of the system.”

In that paper, the authors realized their application on the TinyOS operating system with a dedicated ASP (application specific

processor). The ASP processed all image algorithms to alleviate the CPU of all long sensing tasks and facilitate responsive

processing of high-priority tasks. Adding an extra processor for all image processing sensor networks, considerably increases the

cost of the sensor node platform. It might therefore have been more feasible to implement such algorithms with a multi-threaded

operating system such as MANTIS.

7The mica 2 platform used in the papers [29], [24] uses a processor identical to the processor used in the DSYS25 platform, used in this experiment[28],
[27]. However the mica 2 processor is clocked at twice the speed. Thus, all TinySec and wavelet decomposition task execution times presented in this paper
are doubled.
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C. Further Study

Both operating systems leave room for further study. There is ongoing research at the moment to introduce multi-threading

capabilities into TinyOS to add preemptive scheduling capabilities in order to tackle the performance problems described in

Sections VI. In Section V we see that MANTIS cannot be compiled as efficiently as TinyOS, perhaps a compiler tool specific

to the MANTIS operating system could further reduce memory requirements as nesC does for TinyOS. Much of the scheduling

overhead in the MANTIS operating system was directly caused by switching threads. While thread switching is necessary to

provide faster response times for high-priority tasks, ineffective use can result in over-processing, and reduced idle time for

sleeping. A more complex scheduler could be implemented to provide a scalable trade off in responsiveness, versus sleeping

time. If a number of packet tasks are queued to process consecutively, than the number of thread switches and consequently

the processing overhead is reduced. This leads to more idle time for sleeping but potentially increased delay on the processing

times of the high-priority (packet) task.
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Fig. 12. Standard deviation of packet processing time Et, scheduled with a sensing task of execution time ls = 5ms. (Ref. Section VI)
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Fig. 13. Standard deviation of packet processing time Et, scheduled with a sensing task of execution time ls = 10ms. (Ref. Section VI)
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Fig. 14. Standard deviation of packet processing time Et, scheduled with a sensing task of execution time ls = 25ms. (Ref. Section VI)
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Fig. 15. Standard deviation of packet processing time Et, scheduled with a sensing task of execution time ls = 50ms. (Ref. Section VI)
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Fig. 16. Standard deviation of packet processing time Et, scheduled with a sensing task of execution time ls = 100ms. (Ref. Section VI)
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