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Abstract. Gross primary productivity (GPP) is the largest
and most variable component of the global terrestrial car-
bon cycle. Repeatable and accurate monitoring of terres-
trial GPP is therefore critical for quantifying dynamics in
regional-to-global carbon budgets. Remote sensing provides

high frequency observations of terrestrial ecosystems and is
widely used to monitor and model spatiotemporal variabil-
ity in ecosystem properties and processes that affect terres-
trial GPP. We used data from the Moderate Resolution Imag-
ing Spectroradiometer (MODIS) and FLUXNET to assess
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how well four metrics derived from remotely sensed vegeta-
tion indices (hereafter referred to as proxies) and six remote
sensing-based models capture spatial and temporal varia-
tions in annual GPP. Specifically, we used the FLUXNET
La Thuile data set, which includes several times more sites
(144) and site years (422) than previous studies have used.
Our results show that remotely sensed proxies and modeled
GPP are able to capture significant spatial variation in mean
annual GPP in every biome except croplands, but that the per-
centage of explained variance differed substantially across
biomes (10–80 %). The ability of remotely sensed proxies
and models to explain interannual variability in GPP was
even more limited. Remotely sensed proxies explained 40–
60 % of interannual variance in annual GPP in moisture-
limited biomes, including grasslands and shrublands. How-
ever, none of the models or remotely sensed proxies ex-
plained statistically significant amounts of interannual vari-
ation in GPP in croplands, evergreen needleleaf forests, or
deciduous broadleaf forests. Robust and repeatable charac-
terization of spatiotemporal variability in carbon budgets is
critically important and the carbon cycle science community
is increasingly relying on remotely sensing data. Our anal-
yses highlight the power of remote sensing-based models,
but also provide bounds on the uncertainties associated with
these models. Uncertainty in flux tower GPP, and difference
between the footprints of MODIS pixels and flux tower mea-
surements are acknowledged as unresolved challenges.

1 Introduction

Terrestrial ecosystems sequester about 25 % (≈ 2–2.5 Pg
C year−1) of the carbon emitted by human activities each
year (Canadell et al., 2007). By comparison, terrestrial gross
primary productivity (GPP) is roughly 120 Pg C year−1 and
is the largest component flux of the global carbon cycle (Beer
et al., 2010). Thus, even small fluctuations in GPP can cause
large changes in the airborne fraction of anthropogenic car-
bon dioxide (Raupach et al., 2008). Terrestrial GPP also pro-
vides important societal services through provision of food,
fiber and energy. Methods for quantifying dynamics in terres-
trial GPP are therefore required to improve climate forecasts
and ensure long-term security in services provided by terres-
trial ecosystems (Bunn and Goetz, 2006; Schimel, 2007).

Two main approaches have been used to estimate spatial
and temporal variability in GPP from remotely sensed data.
In the first approach, spatiotemporal patterns in vegetation
indices (VIs) are assumed to reflect spatial and temporal vari-
ation in GPP (Goward et al., 1985; Myneni et al., 1998; Zhou
et al., 2001; Goetz et al., 2005; Bunn and Goetz, 2006). These
studies do not estimate carbon fluxes (but see Jung et al.,
2008). We refer to these metrics as remotely sensed “proxies”
of GPP in this study. In the second approach, remote sensing
data is used as input to models of GPP that fall into one of

three basic groups: (i) light-use efficiency models (e.g., Pot-
ter et al., 1993; Prince and Goward, 1995; Running et al.,
2004; Mahadevan et al., 2008); (ii) empirical models that
use remotely sensed data calibrated to in situ eddy covari-
ance measurements (e.g., Sims et al., 2008; Ueyama et al,
2010); and (iii) machine learning algorithms, which are also
calibrated to in situ measurements (Yang et al., 2007; Xiao
et al., 2010). A large number of studies have compared re-
sults derived from remote sensing-based models with in situ
measurements (e.g., Turner et al., 2006; Heinsch et al., 2006;
Yuan et al., 2007; Sims et al., 2008; Mahadevan et al., 2008;
Xiao et al. 2010). However, all of these studies are based
on relatively small in situ data sets and none have explicitly
examined both spatial and temporal variations in remotely
sensed proxies (e.g., Hashimoto et al., 2012) and modeled
estimates with corresponding variations in in situ measure-
ments of GPP.

In this study, we use data from NASA’s Moderate Reso-
lution Imaging Spectroradiometer (MODIS) to evaluate how
well 10 different remote sensing models and proxies are able
to explain geographic and interannual variation in annual
GPP. Our analysis builds upon and extends previous efforts in
three important ways. First, we examine spatial (across sites)
and temporal (across years) variation separately, focusing on
GPP at annual scale. Distinguishing between spatial and in-
terannual variation is important because the drivers and mag-
nitudes of geographic and interannual variation in GPP are
different (Burke et al., 1997; Richardson et al., 2010a). Sec-
ond, previous studies have examined results from only one or
two models. The analysis we present here encompasses 10
different proxies and models that have not previously been
systematically assessed and compared. Third, we use a data
set that encompasses a much larger number of sites and site-
years than previous studies. Our analysis is therefore much
more comprehensive than previous studies.

The selected proxies and models make very different as-
sumptions about the underlying mechanisms and drivers of
GPP (Table 1). A key goal of the work reported here is to as-
sess how different assumptions and inputs influence remote
sensing results. To accomplish this, our analysis addresses
three questions:

1. How well do the selected remote sensing-based meth-
ods capture geographic (across sites) and interannual
variation (across years) in annual GPP?

2. How does the performance of different methods vary
across biomes?

3. Are methods that use daily or 8-day input data better
at characterizing annual GPP relative to methods that
use annual inputs?

By comparing results from the remote sensing-based
methods against in situ measurements from field sites that
encompass a wide range of biomes and climate regimes, our
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Table 1. ’Remotely sensed proxies and models investigated in this study

Proxy/Model Underlying hypotheses regarding
controls on ecosystem level GPP

Assumptions regarding unrepre-
sented processes

Input data Number of parameters and as-
sumptions regarding parameter
variability

29 
 

7. Tables  769 

Table 1.  Summary of the remote sensing proxies and models investigated in this study. 770 

 771 
 Proxy/Model Underlying Hypotheses 

Regarding Controls on  
Ecosystem Level GPP 

Assumptions 
Regarding 
Unrepresented 
Processes 

Input Data Number of Parameters 
and Assumptions 
Regarding Parameter 
Variability 

 Proxies 

Mean 
NDVI/EVI 

Amount of green leaf area 
controls GPP. 

Other variables known 
to affect 
photosynthesis either 
co-vary with the 
selected variable or 
become insignificant 
at coarse temporal and 
spatial resolution. 

8-day 
NDVI/EVI 

No parameters. 
 
It is assumed that proxies 
are highly correlated with 
GPP and thus variations in 
proxies indicate relative 
variations in GPP. 
 

GPL Growing period length 
controls GPP 

8-day EVI 

EVI-area Variations in GPP are 
controlled by total leaf area 
and GPL. 

8-day EVI 

Models 

Proxy+Met 
(analysis of 
spatial  
variability 
only.) 

GPP is controlled by one of 
the above three proxies and 
mean annual precipitation 
or temperature. 

Short term 
fluctuations in GPP do 
not contribute to 
spatial variation in 
annual GPP. 
 

One of the 
three proxies 
and mean 
annual 
temperature 
or 
precipitation 
(see Table 3). 

3 for each biome. 
Parameters remain 
constant over time and 
space. 

TG Variations in GPP are 
controlled by greenness 
modulated by temperature. 

Other meteorological 
variables such as PAR 
and VPD are not 
important at 8-day 
time scale. 

8-day EVI, 
day and 
night land 
surface 
temperature 

2 each for deciduous and 
evergreen biomes. 
Model parameters vary 
across space (but not time) 
and depend on mean 
annual nighttime land 
surface temperature. 

VPRM Ecosystem level GPP at daily 
time scale is controlled by 
the same physiological 
processes as instantaneous 
leaf or canopy level GPP. 
Leaf age affects GPP in 
deciduous biomes. 
 

Effect of soil moisture 
is captured by LSWI. 

8-day EVI, 
LSWI, daily 
PAR, air 
temperature. 

2 biome specific 
parameters that remain 
constant over space and 
time. 

MOD17 
(MOD17-
Tower) 

Ecosystem level GPP at daily 
time scale is controlled by 
the same physiological 
processes as instantaneous 
leaf or canopy level GPP. 
. 

VPD scalar captures 
the effects of moisture 
stress. 
Leaf age has no effect. 

8-day FPAR.  
Daily PAR, 
VPD and air 
temperature. 

5 biome specific 
parameters that remain 
constant over space and 
time. 

Neural 
Network 

Ecosystem level GPP is 
controlled by the same 
variables that are used in 
MOD17, but they interact in 
a complex, nonlinear way. 

VPD captures soil 
moisture effects. 
 
Unlike VPRM, leaf age 
has no effect. 

8-day FPAR, 
daily PAR, 
VPD and air 
temperature 

No constrain on spatial and 
temporal variability is 
imposed on weights and 
biases. 
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C
 Proxies

Mean NDVI/EVI Amount of green leaf area con-
trols GPP.

Other variables known to affect
photosynthesis

8-day NDVI/EVI It is assumed that proxies

GPL Growing period length controls
GPP.

either co-vary with the selected
variable

8-day EVI are highly correlated with GPP
and thus variations

EVI-area Variations in GPP are controlled
by total leaf area and GPL.

or become insignificant at coarse
temporal and spatial resolution.

8-day EVI in proxies indicate relative varia-
tions in GPP.

Models

“Proxy+ Met”
(analysis of spatial variability
only).

GPP is controlled by one of the
above three proxies and mean an-
nual precipitation or temperature.

Short-term fluctuations in GPP
do not contribute to spatial vari-
ation in annual GPP.

One of the three proxies and
mean annual temperature or pre-
cipitation.

3 for each biome.
Parameters remain constant over
time and space.

TG Variations in GPP are controlled
by greenness modulated by tem-
perature.

Other meteorological variables
such as PAR and VPD are not im-
portant at 8-day timescale.

8-day EVI, day and night land
surface temperature.

2 each for deciduous and ever-
green biomes.
Model parameters vary across
space (but not time) and depend
on mean annual nighttime land
surface temperature.

VPRM Ecosystem level GPP at daily
timescale is controlled by the
same physiological processes as
instantaneous leaf or canopy level
GPP.
Leaf age affects GPP in decidu-
ous biomes.

Effect of soil moisture is captured
by LSWI.

8 day EVI, LSWI, daily PAR, air
temperature.

2 biome specific parameters that
remain constant over space and
time.

MOD17
(MOD17-Tower)

Ecosystem level GPP at daily
timescale is controlled by the
same physiological processes as
instantaneous leaf or canopy level
GPP.

VPD scalar captures the effects of
moisture stress.
Leaf age has no effect.

8-day FPAR. Daily PAR, VPD
and air temperature.

5 biome specific parameters that
remain constant over space and
time.

Neural Network Ecosystem level GPP is con-
trolled by the same variables that
are used in MOD17, but they
interact in a complex, nonlinear
way.

VPD captures soil moisture ef-
fects.
Unlike VPRM, leaf age has no ef-
fect.

8-day FPAR, daily PAR, VPD
and air temperature.

No constrain on spatial and tem-
poral variability is imposed on
weights and biases.

study not only aims to address the questions identified above,
but also attempts to improve understanding of the processes
and factors that control geographic and interannual variation
in annual GPP.

2 Data and methods

2.1 FLUXNET data

Our analysis is based on measurements included in the
FLUXNET La Thuile data set (http://www.fluxdata.org/
SitePages/AboutFLUXNET.aspx). This data set contains
measurements of net ecosystem exchange (NEE) and near
surface meteorology for 247 sites encompassing approxi-
mately 850 site-years of data since 2000. The data set uses an
empirical temperature response function to model ecosystem
respiration (Reichstein et al., 2005), and estimates GPP as
the residual of measured NEE and modeled respiration. The
temperature response function is calibrated using nighttime
data when winds are usually low and assumes that the cali-
brated relationship holds during daytime. It is worth noting
that some site investigators are not in full agreement regard-
ing the method used to model respiration in La Thuile data
set. To address these concerns, efforts to refine and improve

respiration estimates are underway. Until these revised data
are available, however, the La Thuile data set is the only ref-
erence data set available for this type of study. Most impor-
tantly, the La Thuile data set has been widely used, including
in a number of high-profile synthesis studies (e.g., Beer et
al., 2010). We therefore believe that the GPP estimates used
here are of sufficient quality to meet the needs of this study,
although we recognize that it includes errors and uncertain-
ties associated with modeled respiration, which can propa-
gate to GPP estimates. To minimize these errors, we only
included sites with high quality data and identified a subset
of 176 sites with 515 site-years of data where each site-year
satisfied two conditions: (i) more than 95 % of the days had
daily GPP data, and (ii) the mean daily quality flag was more
than 0.75 (Richardson et al., 2010b). Using land cover infor-
mation (see Sect. 2.2), we also excluded sites where fewer
than 20 % of pixels in 10.6 km2 windows ( 7-by-7 window
of 500 m MODIS pixels) centered over the site belonged to
the same land cover type as the tower site. The final data
set included 144 sites (Table S1 in the Supplement) and 422
site-years of data, spanned all of the major biomes and cli-
mate types, and included a range in annual GPP that varied
from 200 to 4000 g C m−2 yr−1 (Table 2; Fig. 1).
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EBF
ENF
GRA
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Fig. 1.Location of 144 sites used in this study from the La Thuile data set.

Table 2. Total number of sites and site-years used in this study from the La Thuile data set. CRO, DBF, EBF, ENF and GRA are cropland,
deciduous broadleaf forest, evergreen broadleaf forest, evergreen needleleaf forest and grassland, respectively. The category SSMF includes
open and closed shrublands, savannas, woody savannas and mixed forest sites.

Biome

CRO DBF ENF EBF GRA SSMF TOTAL

Spatial analysis
No. of sites 21 20 43 16 23 21 144
No. of site-years 43 66 151 43 70 49 422
Temporal analysis
No. of sites 5 10 25 7 12 8 67
No. of site-years 18 52 122 28 51 31 302

2.2 MODIS data products

MODIS collection 5 land products are available from the
Land Processes DAAC (https://lpdaac.usgs.gov) at 250, 500,
and 1000 m spatial resolution, depending on the product
(Justice et al., 2002). We computed the normalized differ-
ence vegetation index (NDVI), the enhanced vegetation in-
dex (EVI), and the land surface water index (LSWI) using
nadir bidirectional reflectance distribution function adjusted
reflectance (NBAR) data at 500 m spatial resolution and 8-
day time step (Schaaf et al., 2002). Information related to
land cover and the timing and duration of the growing sea-
son at each 500 m pixel was obtained from the MODIS Land
Cover Type and Land Cover Dynamics Products (Friedl et
al., 2010; Zhang et al., 2006). We also used MODIS GPP
(MOD17; Running et al., 2004), MODIS fraction of ab-
sorbed photosynthetically active radiation (FPAR) (MOD15;
Myneni et al., 2002), and MODIS day and night land sur-

face temperature (LST; Wan et al., 2002) data, which are all
produced at 1000 m spatial resolution.

Following the approach used in previous studies (Heinsch
et al., 2006; Sims et al., 2008; Xiao et al., 2010), we ex-
tracted 500 and 1000 m MODIS products for 7-by-7 and 3-
by-3 pixel windows, respectively, centered on each site using
the MODIS subsetting tool available at the ORNL DAAC for
Biogeochemical Dynamics (http://daac.ornl.gov). We then
selected the center pixel and all other pixels in the window
with land cover labels equivalent to the land cover type at
each flux tower. Figure 2 shows box plot for the number of
pixels retained at each flux tower site in each biome. MODIS
data were then averaged over the selected pixels to produce a
single value for each MODIS product at each site at each time
step. By using 3-by-3 km windows, we ensure that the tower
is located in the window. More importantly, spatial averag-
ing over pixels with similar land cover minimizes random
variation in MODIS data and reduces errors associated with

Biogeosciences, 11, 2185–2200, 2014 www.biogeosciences.net/11/2185/2014/
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Fig. 2.Box plots showing the number of pixels in 7-by-7 pixel win-
dows centered at each tower site whose land cover class matched
the land cover corresponding to the tower sites (maximum agree-
ment= 49). The pixel land cover classes were obtained from the
MODIS Land Cover Dynamics Product and land cover at each
tower site was obtained from the information provided in the La
Thuile data set. Red line marks median and cross indicates outliers
(> 3 standard deviation).

gridding artifacts (e.g., Tan et al., 2006) and land cover types
that are different from the tower site (Garrity et al., 2011).

2.3 MODIS proxies of GPP

Remotely sensed data such as the growing season mean and
integral of NDVI have been used as proxies for GPP in sev-
eral previous studies (Tucker et al., 1981, 2001; Myneni et
al., 1998; Zhou et al., 2001). In this work we examined four
different MODIS-based proxies of GPP (Table 1): (i) the
growing period length (GPL), (ii) the growing season integral
of EVI (EVI-area), (iii) the growing season mean NDVI, and
(iv) the growing season mean EVI. GPL and EVI-area were
obtained from the MODIS Collection 5 Land Cover Dynam-
ics product (Ganguly et al., 2010). We included the GPL in
our analysis because several studies have suggested that GPL
is an important control on annual GPP (White et al., 1999;
Barr et al., 2004; Churkina et al., 2005). GPL and EVI-area
estimates were not extracted for evergreen broadleaf forest
(EBF) sites because we assume that GPL is not a significant
control on annual GPP in this biome.

2.4 GPP models based on MODIS data

We examined six remote sensing-based models in this study
(Table 1): the MODIS GPP product (MOD17; Running et
al., 2004), the temperature and greenness (TG) model (Sims
et al., 2008), the vegetation photosynthesis and respiration
model (VPRM) (Mahadevan et al., 2008), a non-parametric
neural network model (e.g., Beer et al., 2010; Moffat et

al., 2010), the MOD17 algorithm calibrated to tower GPP
(e.g., Heinsch et al., 2006; hereafter referred to as “MOD17-
Tower”), and regression models that use one of the four prox-
ies and mean annual temperature or mean annual precipita-
tion as predictors. Below we provide a brief description of
each model (also see Table 1).

(i) MOD17. We obtained modeled 8-day estimates of GPP
at each of the selected FLUXNET sites for the MODIS GPP
product (MOD17A2; Running et al., 2004). The algorithm
used to generate this product is based on light use efficiency
and combines 8-day MODIS FPAR data with daily coarse
resolution meteorological data and five biome-specific pa-
rameters to produce daily GPP estimates at 1 km spatial res-
olution (Table 1).

(ii) MOD17-Tower. The standard MOD17 product uses
coarse resolution (1◦ by 1◦) PAR, temperature and vapor
pressure deficit data. However, due to land surface hetero-
geneity and atmospheric variability, the three meteorological
variables show a great deal of fine scale variability. Hein-
sch et al. (2006) showed that GPP estimated by the MOD17
algorithm is sensitive to the quality of meteorological forc-
ing data. To minimize the errors due to the coarse resolu-
tion and low quality of meteorological data, we calibrated the
MOD17 algorithm using fine spatial and temporal resolution,
high quality meteorological data from the FLUXNET data
set. Since model parameters are specific to a set of input data,
we optimized the parameters of MOD17 algorithm by min-
imizing the sum of squared differences between daily tower
measurements and GPP modeled with tower data (Heinsch
et al., 2006). Following the same procedure that is used by
the operational MOD17 algorithm (Zhao et al., 2005), we re-
placed all MODIS FPAR values that were not retrieved by
the main MOD15 algorithm (i.e., missing values and those
produced by the “backup” algorithm) by linear interpolation
using adjacent good quality FPAR values.

(iii) VPRM. This model is also based on light use effi-
ciency, but has significant differences from the MOD17 algo-
rithm (Xiao et al., 2004). Following Mahadevan et al. (2008),
we prescribed maximum, minimum and optimum tempera-
tures in each biome. We then treated the half saturation point
(PAR0) and maximum light use efficiency (εmax) as biome-
specific parameters, and optimized them for each biome by
minimizing the sum of the squared errors between daily
modeled and observed GPP:

SSE(εmax, PAR0) =

∑
(GPPVPRM − GPPT OWER)2 (1)

where GPPVPRM is daily modeled GPP andGPPTOWER cor-
responds to measured GPP. We then randomly sampled the
parameter space 1000 times and used the “trust-region” al-
gorithm in MATLAB (MathWorks, 2009b) to find the vector
[εmax, PAR0] that minimized the cost function. To account
for noise and missing data, we used quality assurance flags
from the MODIS NBAR product to remove poor quality EVI
and LSWI data and applied a locally weighted least squares

www.biogeosciences.net/11/2185/2014/ Biogeosciences, 11, 2185–2200, 2014
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algorithm (Mahadevan et al., 2008) to smooth the resulting
MODIS time series.

(iv) Temperature and greenness (TG). Sims et al. (2008)
developed the TG model using MODIS data at 16-day time
steps. In systems that exhibit rapid development and senes-
cence, such as croplands, grasslands, savannas, and decidu-
ous broadleaf forests, this relatively coarse temporal resolu-
tion reduces the TG model’s ability to capture sharp transi-
tions in phenology. We therefore used MODIS 8-day EVI
and LST data to calculate GPP at 8-day resolution. Opti-
mization of TG model parameters using tower GPP did not
produce any significant differences in predicted GPP rela-
tive to the original model, and so we used the same parame-
ters as originally described by Sims et al. (2008). Evergreen
broadleaf sites were excluded because the TG model was not
designed for this biome.

(v) Neural network model. Machine learning models that
use meteorological and remote sensing data to predict car-
bon fluxes have been used in many recent studies (e.g., Xiao
et al., 2010; Moffat et al., 2010). These models include no ex-
plicit biophysical structure, but are based on the assumption
that functional relationships exist between the response (i.e.,
GPP) and predictor variables. We used a feed-forward neu-
ral network model with a single hidden layer and a sigmoid
transfer function (MATLAB, 2009a). The model was esti-
mated by minimizing the difference between predicted and
observed GPP at daily time steps using the same input vari-
ables that were used to calibrate the MOD17-Tower model.

(vi) Regression models combining remote sensing proxies
and climate predictors. We estimated regression models at
annual time steps for each biome using two predictors: (1) a
remotely sensed proxy (from Sect. 2.3), and (2) mean an-
nual temperature or precipitation (Garbulsky et al., 2010).
The final model for each biome was based on the remotely
sensed proxy and climate variable that explained the most
variance in annual GPP in each biome. This model is referred
to as “Proxy+Met”. In CRO the model included EVI-area
and mean annual temperature, in DBF and ENF it was based
on GPL and mean annual temperature, and in EBF, GRA,
and SSMF mean growing season EVI and mean annual pre-
cipitation.

2.5 Analysis

Our analysis uses estimates of annual GPP from the La
Thuile database. Despite the size of this database, five biomes
had fewer than 10 tower sites (savannas, woody savannas,
open shrublands, closed shrublands, and mixed forest); we
therefore pooled these into one group, labeled as SSMF. Sa-
vannas, woody savannas, open shrublands, and closed shrub-
lands are all arid or semi-arid, where precipitation is a dom-
inant control on primary productivity. Our analysis revealed
that annual GPP at the mixed forests sites was more highly
correlated with annual precipitation than with temperature.
Thus, while the SSMF group includes sites with different

plant functional types, variability in GPP at all of the sites
in this group is largely controlled by water.

Our analysis explores both spatial and interannual covari-
ance between in situ measurements and remotely sensed
proxies and model-based estimates of annual GPP. To per-
form this analysis, it was important to distinguish random
variability from ecologically meaningful variation in an-
nual GPP data at each site. Daily GPP derived from eddy-
covariance measurements are generally assumed to include
uncertainty on the order of 15–20 % (Falge et al., 2002; Ha-
gen et al., 2006). However, summing daily GPP cancels ran-
dom errors and reduces relative uncertainty in estimates of
annual GPP compared to daily values (Falge et al., 2002;
Hagen et al., 2006; Lasslop et al., 2010). Desai et al. (2008)
report the interquartile range of annual GPP to be less than
10 % of the mean and Richardson (unpublished) estimates
the uncertainty in annual GPP derived from eddy-covariance
to be 5 %. Here we assume that uncertainty in annual GPP is
±5 % (±1 standard deviation).

We calibrated four models (the MOD17-Tower, neural net-
work, Proxy+Met, and VPRM model) with tower data at
biome level. To do this, we estimated separate models for
each biome, where the parameters of each of the four mod-
els were optimized using tower GPP and meteorological
data specific to each biome. In evaluating these four models
we used a leave-one-site-out cross-validation method. This
method allows the most efficient and objective use of avail-
able data while enabling independent calibration and evalua-
tion of a model. Thus, in a biome with a total ofn sites, we
successively usedn − 1 sites to calibrate model parameters
and employed these parameters to predict GPP at the left-out
nth site.

The first part of our analysis examines spatial covari-
ance between remotely sensed estimates (or proxies) and
in situ measurements of annual GPP. To this end, we first
quantified the magnitude of spatial variance in annual tower
GPP within each biome, and used this information to as-
sess whether within-biome variance was sufficiently large
relative to the uncertainty to provide meaningful informa-
tion related to spatial variability in annual GPP. We then as-
sessed the power of each remotely sensed proxy and model
to explain spatial variation in annual tower GPP within each
biome. Specifically, we compared variation in mean annual
GPP across sites with the corresponding variation in each of
the four remotely sensed proxies and mean annual GPP pre-
dicted by each of the models described in Sect. 2.4.

To analyze interannual variation, we excluded sites with
less than 3 years of GPP data. This resulted in a final data
set composed of 302 site-years derived from 67 sites (Ta-
ble 2). Also, because the magnitude of annual site anomalies
tends to vary proportionally with the magnitude of mean an-
nual GPP, we used relative annual anomalies for our analysis,
which removes this effect. Specifically, the percent relative
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Table 3.Baseline statistics for annual tower GPP across sites in different biomes.

Biome Mean Standard Coefficient of Measurement Std/Uncertainty
annual site deviation variation uncertainty

GPP (Std) of at 5 % of
(g C m−2 yr−1) annual site mean annual

GPP (g C m−2 yr−1) GPP (g C m−2 yr−1)

CRO 1225 400 0.32 61 6.5
DBF 1333 321 0.24 66 4.8
ENF 1242 592 0.47 62 9.5
EBF 2240 913 0.40 112 8.1
GRA 1137 544 0.47 56 9.7
SSMF 1023 523 0.51 51 10.2
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Fig. 3.R2 between mean annual tower GPP and corresponding val-
ues from the four different remotely sensed proxies of GPP. GPL
and EVI-area were not used in EBF.

annual anomaly was calculated as

RAAk(s, t) =
Ak(s, t) − MA k(s)

MA k(s)
× 100 (2)

where RAAk(s, t) is the percent relative annual anomaly at
sites in yeart , Ak(s, t) is the value of the variablek (in this
case annual GPP), and MAk(s) is the annual mean of the
variablek. Hereafter we refer to RAAk(s, t) as the relative
annual anomaly.

Relative annual anomalies in tower GPP were compared
with corresponding variations in the four remotely sensed
proxies and annual GPP predicted from the five models de-
scribed in Section 2.4. Note that we did not include results
for the “Proxy+Met” model because interannual anomalies
in annual temperature and precipitation were not signifi-
cantly correlated with interannual anomalies in tower GPP.
Finally, since large anomalies have high signal-to-noise ra-
tios and are the main source of variance in interannual tower
GPP, they provide a robust basis for assessing remote sensing

proxies and models. To exploit this, we separately analyzed
large anomalies, which we define here as those that exceeded
±10 % of mean annual GPP at each site (cf., Papale et al.,
2006).

3 Results

3.1 Spatial variation in mean annual GPP across sites

(i) Baseline characterization of spatial variability in
tower GPP. Mean annual GPP varied from 1023–2240 g
C m−2 year−1 across biomes. DBF had the lowest (321 g
C m−2 year−1) and EBF had the highest standard devia-
tion (913 g C m−2 year−1) in mean annual site GPP (Ta-
ble 3). Among the four other biomes (CRO, ENF, GRA and
SSMF), the standard deviation ranged between 400 and 600 g
C m−2 year−1 (Table 3). DBF also had the lowest coefficient
of variation (0.24), which was roughly half the magnitude ob-
served in ENF (0.47), GRA (0.47) and SSMF (0.51). More
importantly, spatial variation in mean annual site GPP in
all biomes was significantly greater than average uncertainty
(nominally∼ 5 %; Table 3). The ratio of the standard devia-
tion in annual GPP to average uncertainty was lowest (∼ 5)
for DBF and highest for SSMF (∼ 10).

(ii) Spatial covariance between remotely sensed proxies
and tower GPP. Remotely sensed proxies of GPP showed
widely different ability to capture spatial variance in mean
annual tower GPP, both within and between biomes. In CRO
and DBF, only one of the four proxies (EVI-area and GPL,
respectively) was significantly correlated with annual tower
GPP. One or more proxies captured more than half the to-
tal variance in annual tower GPP in all biomes except CRO
(Fig. 3). EVI-area was significantly correlated with annual
tower GPP in five biomes, mean NDVI and EVI was sig-
nificantly correlated in four biomes (ENF, EBF, GRA and
SSMF), and GPL was significantly correlated with annual
tower GPP in two biomes (DBF and ENF). Growing pe-
riod length (GPL) was most highly correlated with annual
tower GPP in one biome (DBF), EVI-area was most highly
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Fig. 4. R2, RMSE, MBE, and slope between modeled and measured mean annual GPP predicted from six models. TG model was not
evaluated in EBF. RMSE is a measure of mean discrepancy between modeled and flux GPP. It does not distinguish between over- and
under-prediction. MBE discriminates between over- and under-prediction and is a measure of mean bias between modeled and tower GPP.

correlated in two biomes (CRO and ENF), and mean EVI
was most highly correlated in three biomes (EBF, GRA, and
SSMF).

(iii) Spatial covariance between remote sensing-based
models and tower GPP. The ability of the remote sensing-
based models to capture spatial variation in annual GPP
varied substantially within and between biomes. Overall,
the “Proxy+Met” model provided the best overall predic-
tion of mean annual tower GPP; mean annual site GPP pre-
dicted using this approach was significantly correlated with
tower GPP in all six biomes (p < 0.05), and explained the
largest variance in CRO (R2

=0.38), DBF (R2
= 0.47), GRA

(R2
=0.85) and SSMF (R2

=0.70; Fig. 4). In ENF and EBF,
tower GPP was most highly correlated with GPP predicted
by the neural network model (R2

=0.68 and 0.85 in ENF
and EBF, respectively; Fig. 4), but GPP predicted by the
“Proxy+Met” model captured nearly the same amount of

variance (R2
=0.63 and 0.82 in ENF and EBF, respectively).

The RMSE and MBE for GPP modeled by the “Proxy+Met”
model were among the lowest for all the six biomes (Fig. 4).
Modeled GPP from the VPRM and neural network models
also had low mean bias errors in one or more biomes, but the
slope for least squares fits between modeled and tower GPP
varied substantially across biomes for both of these models.

3.2 Temporal variation in annual site GPP across years

(i) Baseline characterization of interannual variation in
tower GPP. Total interannual variance in GPP was domi-
nated by years with large anomalies (Table 4). Average rel-
ative absolute anomalies were largest in GRA (17.5 %), fol-
lowed by CRO (16.5 %) and SSMF (11.6 %). In the remain-
ing three biomes (DBF, ENF and EBF), average relative ab-
solute annual anomalies were less than 10 % and were lowest
(8 %) in EBF (Table 4). The proportion of large anomalies

Biogeosciences, 11, 2185–2200, 2014 www.biogeosciences.net/11/2185/2014/



M. Verma et al.: Remote sensing of annual terrestrial gross primary productivity from MODIS 2193

CRO DBF ENF EBF GRA SSMF
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
2

 

 
NDVI
EVI
GPL
EVI−area

Fig. 5.R2 between relative interannual anomalies in tower GPP and
the four proxies. GPL and EVI-area were not evaluated in EBF.

was highest in CRO (67 %) and lowest in SSMF (26 %). Of
the remaining four biomes, the proportion of year with large
anomalies was 51 % in GRA, but less than one third of rel-
ative absolute annual anomalies were greater than 10 % in
DBF, ENF and EBF (Table 4).

(ii) Covariance between interannual anomalies in re-
motely sensed proxies and tower GPP. Relative annual
anomalies in growing season EVI and NDVI were signif-
icantly correlated with corresponding anomalies in tower
GPP in EBF, GRA and SSMF (Fig. 5). Relative annual
anomalies in growing season EVI showed marginally higher
correlations with corresponding GPP anomalies in EBF
(R2

= 0.52) and GRA (R2
= 0.64), and GPP anomalies in

SSMF were most highly correlated with relative anomalies
in NDVI (R2

= 0.42; Fig. 5). No other proxies showed sig-
nificant correlation with interannual anomalies in tower GPP,
and agreement was especially poor in CRO, DBF and ENF,
even for large anomalies in tower GPP.

(iii) Covariance between interannual anomalies in re-
motely sensed model predictions and tower GPP. In GRA,
relative annual anomalies in GPP estimated by the TG,
MOD17-Tower and neural network models explained sub-
stantial variance in corresponding tower GPP anomalies
(R2 ∼= 0.6). In SSMF, the neural network model best ex-
plained the relative annual anomalies in tower GPP (R2 ∼=

0.7). In CRO, DBF, ENF and EBF, however, none of the
modeled relative anomalies in annual GPP were significantly
correlated with relative anomalies in tower GPP (Fig. 6).

4 Discussion

4.1 Spatial variation in annual GPP

The results from this study show that remotely sensed prox-
ies of GPP can successfully capture statistically significant
and meaningful within-biome variation in GPP, but that the
strength of the relationship is highly variable and depends on
the biome and remotely sensed proxy. However, with the ex-
ception of ENF and GRA, proxies explained less than 50 %
of the spatial variance in annual GPP. Thus, inferences re-
garding spatial patterns in GPP based on patterns observed
in remotely sensed proxies should be made with caution.

Spatial covariance between remote sensing model predic-
tions and tower-based annual GPP were similarly inconsis-
tent; the majority of models explained less than 50 % of spa-
tial variance in annual GPP. With the exception of croplands,
the Proxy+Met model showed the best agreement with tower
GPP. This result is consistent with the hypothesis that spatial
variation in terrestrial GPP over large areas reflects an equi-
librium response to climate (Burke et al., 1997; Richardson
et al., 2010a). Recent studies have also suggested that light
use efficiency model parameters should be calibrated to dif-
ferent climate types within biomes, thereby capturing spa-
tial variation in ecosystem properties and processes (King et
al., 2011). Our results appear to support this approach, and
refined treatments that account for both temporal (interan-
nual) and spatial (within-biome) variation in model parame-
ters may help to resolve this issue.

Overall, the models had the weakest performance in CRO
and DBF. Relatively weak performance of models in DBF
at annual scale has also been noted in the context of dy-
namic ecosystem models (e.g., Schwalm et al., 2007). Most
of the DBF sites included in this study are located in tem-
perate regions where phenology co-varies with temperature
and PAR, and exerts significant control on annual GPP across
sites (Richardson et al., 2012). Across sites, one day of error
in estimating spring and fall phenology can lead to errors of
12 g C m−2 in January to June GPP and 6 g C m−2 in July
to December GPP estimates, respectively (Richardson et al.,
2012). In LUE-based models such as those included in this
analysis, interaction between PAR and phenology is primar-
ily captured through APAR. Thus, the ability of LUE-based
models to capture variations in GPP is closely tied with the
accuracy of remotely sensed estimates (or surrogates) for
FPAR. For a variety of reasons it appears that 8-day MODIS
data (FPAR in MOD17, and EVI in VPRM and TG) do not
consistently capture rapid phenological changes occurring
over relatively short timescales in spring and fall, thereby
introducing error to remote sensing-based estimates of an-
nual GPP. Moreover, at instantaneous timescales temperature
and vapor pressure deficit modulate leaf level photosynthe-
sis (Farquhar et al, 1980). The LUE models we examined
use daily (or 8-day) inputs and assume that leaf-level mech-
anisms hold at daily (or longer) timescales and are uniform

www.biogeosciences.net/11/2185/2014/ Biogeosciences, 11, 2185–2200, 2014



2194 M. Verma et al.: Remote sensing of annual terrestrial gross primary productivity from MODIS

Table 4.Baseline statistics for relative annual anomalies in tower GPP in different biomes.

Biome Mean annual Percentage of Total Percentage of
relative anomalies variance total variance
absolute greater due to large
anomaly than 10 % anomalies

CRO 16.5 67 405 96
DBF 8.8 29 122 79
ENF 9.7 29 194 88
EBF 7.8 29 112 88
GRA 17.5 51 642 97
SSMF 11.6 26 319 92
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Fig. 6.R2 and slope between relative interannual anomalies of GPP from tower and the five models.

over large areas. However, whether and how leaf level pro-
cesses scale to daily and longer timescales is an open ques-
tion (Beer et al., 2010; Horn and Schulz, 2012), and some
studies have observed that daily temperature and vapor pres-
sure deficit exert only modest control on daily GPP (Ge-
bremichael and Barros, 2006; Jenkins et al., 2007; Garbulsky
et al., 2010).

In addition to the reasons mentioned above, the remote
sensing methods tested here did not effectively explain spa-
tial variation in annual GPP in crops, probably because agri-
cultural practices that are not captured by remote sensing ex-
ert significant control on GPP in croplands. Specifically, ap-
plication of fertilizers (Eugster et. al., 2010), variation in crop
varieties (Moors et al., 2010), irrigation, and harvest prac-
tices significantly modify productivity in croplands (Suyker
et al., 2004; Verma et al., 2005). These practices are not di-
rectly observable from remote sensing, and as a result, varia-
tion in productivity arising from these practices are not well-

reproduced by remote sensing-based models (Zhang et al.,
2008; Chen et al., 2011).

4.2 Interannual variation in GPP

Results from this work suggest that the ability of widely
used remote sensing methods to explain interannual variation
in GPP is relatively modest and varies significantly across
biomes. In CRO, DBF, and ENF, relative annual anomalies in
tower GPP were not significantly correlated with correspond-
ing anomalies in remote sensing proxies and model predic-
tions, even when anomalies less than±10 % were excluded.
This result suggests that important environmental drivers, bi-
otic factors, and other unknown controls that influence in-
terannual variability in GPP were not captured by the re-
mote sensing proxies and models in these biomes. For ex-
ample, moisture in the root zone is especially important and
can affect annual GPP in both crops and seasonally dormant
forests (Irvine et al., 2004; Zhang et al., 2006). Similarly,
anomalies in spring phenology can have carry-over effects
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that influence GPP anomalies (e.g., Richardson et al., 2010b).
Neither of these controls is directly observed or represented
in the remote sensing proxies or models that we tested. In
DBF high frequency variation in meteorological forcing has
been shown to produce variation in GPP that accumulates
over time and affects annual productivity (Medvigy et al.,
2010).

On a more positive note, interannual anomalies in mean
growing season greenness (EVI) and annual GPP were
highly correlated in EBF. At the same time, relative annual
anomalies in GPP predicted by the remote sensing mod-
els did not show comparable explanatory power at EBF
sites. Thus, the additional complexity provided by the mod-
els not only failed to improve their performance but seemed
to effectively cancel information provided by remote sens-
ing. Several recent studies have documented large anoma-
lies in greenness associated with drought in Amazon forests
(Saleska et al., 2007; Samanta et al., 2010; Xu et al.,
2011), which may significantly affect regional-to-global car-
bon budgets (Brando et al., 2010). The relationship between
remotely sensed VIs and GPP at seasonal timescale is par-
ticularly complex in EBF (Huete et al., 2006). Despite these
challenges, our results suggest that year-to-year variations in
GPP may be partly driven by the corresponding variations
in LAI. A number of EBF sites included in this study are
located in subtropical Mediterranean locations where annual
productivity is partly controlled by precipitation and large
annual precipitation anomalies cause corresponding anoma-
lies in VIs.

Anomalies in mean growing season EVI and NDVI ex-
plained∼ 40–60 % of annual GPP anomalies in GRA and
SSMF. In GRA, correlations between anomalies in mean EVI
(and NDVI) and anomalies in GPP suggest that interannual
variability in GPP in grasslands is tightly coupled to leaf area
and supports the hypothesis that grasslands use LAI regula-
tion to avoid moisture stress (Jenerette et al., 2009). Our re-
sults suggest that mean EVI and NDVI successfully capture
the effect of moisture variability on GPP at GRA and SSMF
sites, including moderate drought conditions when GPP can
actually increase because of increases in LAI (Nagy et al.,
2007; Mirzaei et al., 2008; Aires et al., 2008).

Finally, all the models included in this study assume that
parameters such as light use efficiency are biome-specific
and constant over time. VPRM and MOD17 specifically as-
sume that variation in GPP can be explained by variation
in FPAR and a small set of easily observable environmen-
tal variables (Table 1). Our results indicate that this assump-
tion is not very robust, and that spatial and temporal varia-
tion (both within and across years) in key parameters may
explain a significant portion of year-to-year variance in GPP.
Models that use static or biome-specific parameters will not
capture these dynamics (Polley et al., 2008; Stoy et al., 2009;
Keenan et al., 2011) and therefore are not able to capture
important sources of spatiotemporal variation in GPP. Mov-
ing forward, it may be possible to refine this weakness of

remote sensing-based LUE models using complementary re-
mote sensing metrics such as fluorescence or photochemical-
based reflectance indices that measure physiological proper-
ties of vegetation canopies that control photosynthesis (e.g.,
Guanter et al., 2012; Gamon et al., 1992). Recent studies
have also suggested that lagged effects can significantly af-
fect annual GPP (Gough et al., 2008; Marcolla et al., 2011).
For example, Zielis et al. (2014) used long-term eddy covari-
ance data collected at a spruce forest site to show that inclu-
sion of meteorological data from the previous year signifi-
cantly improved estimates of net ecosystem exchange, sug-
gesting that next generation models need to include lagged
effects and functional responses to climate forcing in previ-
ous years.

4.3 Challenges in comparing MODIS derived estimates
with tower GPP

We identify two main challenges in a study like ours: land-
scape heterogeneity and uncertainty in tower GPP. Land-
scape heterogeneity is widely viewed to be an important fac-
tor that complicates interpretation of results from studies that
couple flux data with data from MODIS. In this study, we
accounted for landscape heterogeneity around tower sites us-
ing the MODIS land cover product. However, sub-pixel het-
erogeneity in land cover may still be a source of disagree-
ment between observed and modeled fluxes. Furthermore,
in biomes with strongly seasonal climates, sub-pixel hetero-
geneity can produce significant errors in remotely sensed
phenology, which influences both observed and modeled pri-
mary productivity in many ecosystems. Emerging data sets
and methods from Landsat for mapping both land cover and
phenology (e.g., Melaas et al., 2013) at finer spatial resolu-
tion should address the issue of landscape heterogeneity and
provide an improved basis for this type of analysis.

Since year-to-year variations in GPP are relatively small,
accurate characterization of uncertainty in tower GPP is im-
portant for interannual analysis. We used best available esti-
mates of uncertainty in GPP. Estimating uncertainty in tower
GPP is an active field of research and efforts are underway
to improve our understanding of uncertainty in tower data.
As more data become available from different sites and bet-
ter characterization of uncertainty in GPP becomes possible,
future analyses can factor in new and better estimates of un-
certainty in tower GPP.

5 Conclusions

We draw two main conclusions from this work. First, the
remote sensing models and proxies that we examined pro-
vide statistically significant and useful information related to
spatial variation in annual GPP. Second, the remotely sensed
proxies and modeled estimates of annual GPP only explained
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relatively modest amounts of variance in annual GPP across
years.

These conclusions are important for two main reasons.
First, no previous study has explored these issues using
a database as large and comprehensive as the FLUXNET
La Thuile data set. Second, and more importantly, a large
number of recent studies have used remote sensing to infer
regional-to-global changes in GPP or net primary productiv-
ity. Many of these papers justify their conclusions based on
previous studies that use models or proxies to explain spatial
variance in annual GPP (or NPP) across large spatial scales
or at seasonal timescales. The results from this study suggest
the ability of remote sensing methods to explain spatial vari-
ance in annual GPP across widely different biomes should
not be used to assume that remote sensing methods accu-
rately capture variation in annual GPP within biomes. Simi-
larly, the ability of remote sensing to capture seasonal varia-
tion in GPP should not be used to assume that remote sensing
methods successfully capture variation in annual GPP across
years. In both cases, the magnitude of variance is generally
much larger in the former case (across biomes or within sea-
sons) than it is in the latter case (within biomes or across
years).

An additional important result from this work is that
greater model complexity and higher temporal resolution did
not improve the ability of models to explain spatial or tem-
poral variance in annual GPP. Indeed, the simplest model
(“Proxy+Met”) explained the most spatial variance in an-
nual tower GPP. Similarly, interannual variation in remotely
sensed proxies explained as much or more interannual vari-
ance in GPP than any of the models. Spatial and temporal
correlation between annual GPP and remote sensing prox-
ies of total greenness (e.g., as measured by mean grow-
ing season EVI) was highest in moisture-limited biomes. In
temperature-limited systems such as DBF and ENF, on the
other hand, remotely sensed proxies showed statistically sig-
nificant correlations with spatial variation in annual GPP, but
almost no ability to explain interannual variation in GPP.

Supplementary material related to this article is
available online athttp://www.biogeosciences.net/11/
2185/2014/bg-11-2185-2014-supplement.pdf.
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