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Abstract: In the framework of the European Space Agency Climate Change Initiative, 

a global, almost daily, soil moisture (SM) product is being developed from passive and 

active satellite microwave sensors, at a coarse spatial resolution. This study contributes to 

its validation by using finer spatial resolution ASAR Wide Swath and in situ soil moisture 

data taken over three sites in Ireland, from 2007 to 2009. This is the first time a comparison 

has been carried out between three sets of independent observations from different sensors 

at very different spatial resolutions for such a long time series. Furthermore, the SM spatial 

distribution has been investigated at the ASAR scale within each Essential Climate 

Variable (ECV) pixel, without adopting any particular model or using a densely distributed 

network of in situ stations. This approach facilitated an understanding of the extent to 

which geophysical factors, such as soil texture, terrain composition and altitude, affect the 

retrieved ECV SM product values in temperate grasslands. Temporal and spatial variability 

analysis provided high levels of correlation (p < 0.025) and low errors between the three 

datasets, leading to confidence in the new ECV SM global product, despite limitations in 

its ability to track the driest and wettest conditions. 
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1. Introduction 

Although only a small percentage (~1%, [1]) of the total freshwater budget is contained in the soil 

layer of the Earth’s surface, it is a key parameter in the exchange of mass and energy at the  

soil-atmosphere boundary, as well as in eco-hydrological processes [2–5]. Soil moisture (SM) controls 

the partitioning of incoming radiant energy into latent and sensible heat fluxes through evaporation and 

transpiration [6,7]. Moreover, surface runoff and infiltration of precipitation are strongly related to the 

soil moisture content, which, as a result, has important control over the biogeochemical cycling of 

nutrients [8], the availability of transpirable water for plants and groundwater recharge. Hence, the 

knowledge of soil moisture behaviour is of vital importance for flood and drought forecasting, water 

resource management, irrigation, weather prediction and for global climate change research [9].  

For these reasons, the Global Climate Observing System (GCOS) secretariat has identified soil 

moisture as an “Essential Climate Variable” (ECV), thereby requiring enhanced observation of its 

spatial and temporal variability in support of the United Nations Framework Convention on Climate 

Change (UNFCCC). It has been observed that particular meteorological conditions, geological 

characteristics, topography and land cover can affect the soil moisture variation in a small area as 

much as in a large region [10,11]. Moreover, considering the top layer of the soil, which is more 

subject to the influences of the atmosphere (than deeper soil layers), soil moisture can change 

significantly within a few hours [12]. Such high spatial variability and temporal dynamics make the 

monitoring of soil moisture over wide areas challenging.  

Given the increasing interest of the scientific community in understanding the relationship between 

soil moisture and climate change, the in situ stations network is currently expanding worldwide [13]. 

Nevertheless, mapping local- and regional-scale variations in soil moisture requires a high spatial 

density of observations over time, making in situ measurements time consuming and costly. On the 

other hand, remote sensing represents a useful tool, as satellites can regularly provide information over 

large areas [14]. 

A first global soil moisture product meeting the requirements set by the GCOS was created within 

the framework of the European Space Agency (ESA) Water Cycle Multi-mission Observation Strategy 

(WACMOS) project [15], by merging soil moisture products derived from multi-frequency radiometer 

and C-band scatterometer observations into a single dataset covering the period from 1979 to  

2010 [16–18]. Global soil moisture maps are provided on an almost daily basis and with a spatial 

resolution of 0.25 degrees. 

Building on the WACMOS project, the ECV SM global time series is currently being extended and 

enhanced, by improving the retrieval and merging algorithms, in the context of the ESA-funded 

Climate Change Initiative (CCI) programme [19].  

Despite the advantageous daily frequency of such products, there is still a relatively coarse spatial 

resolution. The assessment of soil moisture retrieved from satellite acquisitions is commonly carried 
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out through a comparison with in situ measurements. In [20], promising results have been found by 

validating three global soil moisture products, including the WACMOS time series, through a 

comparison with in situ measurements taken at 196 stations from five networks across the world. 

While the satellite measurements represent hundreds of km2 of a more variable soil layer (0–5 cm), the 

in situ measurements describe the smaller areas (few dm2) of a deeper stratum.  

However, the higher spatial resolution and the regular coverage provided by spaceborne Synthetic 

Aperture Radars (SARs) makes them a promising approach for measuring monthly, seasonal and  

long-term variations in surface soil moisture content [21,22]. In addition, the characterization of the 

errors inherent in the coarser spatial resolution ECV products can be studied. On the other hand, the 

retrieval of soil moisture by using SAR acquisitions is a non-trivial task. In fact, not only the soil 

moisture content, but also the speckle noise, terrain typology, soil roughness, vegetation cover and 

incidence angle affect the microwave backscattering. All of these factors must be taken into account to 

reduce the uncertainty and to improve the accuracy of the soil moisture estimate. In addition, the 

characterization of the errors inherent in the coarser spatial resolution ECV products can be studied. 

The comparison of soil moisture time series datasets acquired by different sensors and representing 

different spatial scales remains challenging due to the large-scale differences [23,24]. Nevertheless 

their inter-comparisons are still useful owing to the temporal stability of soil moisture patterns [25], 

where soil moisture values at smaller scales are representative of the mean soil moisture content over 

larger areas. 

The opportunities to characterize large areas through the use of higher spatial resolution (hundreds 

of metres to several kilometres) image data acquired every few days make the ENVISAT Advanced 

Synthetic Aperture Radar (ASAR) sensor a suitable tool for improving the understanding of the ECV 

SM global products. In [26–35], the capability of ASAR backscattering to estimate the surface soil 

moisture has been demonstrated.  

In this study, the ASAR Wide Swath (WS) mode of ASAR images (150-m spatial resolution) 

acquired at VV polarization have been used for the retrieval of soil moisture in Southern Ireland, 

where three in situ stations have been taken into account. The overall aim of the study was to 

determine how representative the ECV SM product is of the SM condition, both spatially and 

temporally. To achieve this, temporal and spatial analyses of the soil moisture are examined with the 

goals of: 

(1) Improving the understanding of the temporal variability of the difference between soil 

moisture values derived from the different sensors. 

(2) Improving the understanding of the main factors affecting the soil moisture spatial variability 

and ECV SM values. 

Firstly, in order to analyse the soil moisture temporal behaviour, the derived ASAR pixel-based 

information has been averaged over the corresponding ECV pixel, which includes a single in situ 

station. Then, a triple comparison between ASAR WS, ECV and in situ soil moisture time series has 

been carried out. The spatial variability of the soil moisture within the ECV size pixel has been 

successively studied by exploiting the finer spatial resolution of the ASAR WS images. Ancillary data, 

such as a European Digital Elevation Model (EU-DEM) [36], the Irish soil map provided by the 
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Environmental Protection Agency (EPA) and the Corine Land Cover map (CLC2006), have been used 

to interpret the spatial and temporal soil moisture information retrieved. 

2. Test Site Description 

The study focused on the south of Ireland using three in situ sites, namely Kilworth (KW), 

Pallaskenry (PK) and Solohead (SH) (Figure 1). The region is characterized by a humid mild temperate 

climate, with a mean annual precipitation of ~1200 mm·y−1. The in situ stations are installed in grassland 

areas, which represent almost 80% of the agricultural area of Ireland (4.4 million hectares) [37]. The 

region is typically low lying, with altitudes ranging between 15 m and 104 m above sea level, and 

relatively flat (slope lower than 6°). On the basis of the United States Department of Agriculture 

(USDA), the soil texture is classified as sandy loam in Kilworth and as loam in Pallaskenry and 

Solohead. In Table 1, the specific characteristics of each location are reported. 

Figure 1. ASAR WS image of the area under study. The location of each in situ station 

used in this work is also shown within each Essential Climate Variable (ECV)-sized pixel 

(©Google Earth). 

 

Table 1. Test site soil characteristics. KW, Kilworth; PK, Pallaskenry; SH, Solohead. 

Site Latitude Longitude Bulk Density (g/cm3) Sand% Silt% Clay% Porosity% 

KW 52°10′N −8°14′E 1.08 ± 0.07 52.68 ± 1.38 25.50 ± 2.91 17.81 ± 1.52 59 ± 3.82 

PK 52°39′N −8°51′E 1.03 ± 0.10 49.50 ± 0.25 31.50 ± 1.61 19 ± 1.36 61 ± 5.92 

SH  52°30′N −8°12′E 0.99 ± 0.14 45.85 ± 1.32 31.90 ± 2.90 22.25 ± 1.57 63 ± 8.90 
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3. Material and Methods 

3.1. In Situ SM Data  

Soil moisture in situ measurements have been collected using time domain reflectometers (TDR), 

Campbell Scientific CS616, installed horizontally at each of the three study sites. The instruments have 

not been calibrated with the soil texture, but a standard manufacturer calibration closest to the soil type 

has been used. This indicates that while the absolute soil moisture may not be exact, the relative soil 

moisture and changes of soil moisture from day to day are correct. The instrument manufacturer’s 

accuracy is ±2%. Measurements have been recorded at 30-min intervals, together with precipitation 

and soil temperature, since 2007.  
The in situ instruments provide soil moisture values to a depth of 5 cm from the surface and are 

expressed as the soil water-filled pore space (WFPS). The ECV SM data are in volumetric units 

(m3·m−3). The in situ values have been converted to the same units, by using the porosity f as in 

Equation (1): ߠ௩ = ܵܲܨܹ ݂100 (1)

3.2. Remotely Sensed Data  

3.2.1. ECV SM Product 

In the first version of the global ECV SM product, released in June 2012, by the Vienna University 

of Technology (TUW) and freely available at [19], soil moisture has been retrieved from several 

microwave multi-frequency radiometers (Scanning Multichannel Microwave Radiometer (SMMR), 

Special Sensor Microwave/Imager (SSM/I), Tropical Rainfall Measuring Mission's (TRMM) 

Microwave Imager (TMI) and Advanced Microwave Scanning Radiometer for Earth Observation 

System (ASMR-E), and C-band scatterometers European Remote Sensing (ERS), Advanced 

SCATterometer (ASCAT) ). The Water Retrieval Package (WARP) developed at TUW has been used 

to derive the soil moisture from active system acquisitions, while all passive products were generated 

using the VUA-NASA (Vrije Universiteit Amsterdam and NASA) land Parameter Retrieval Model 

(LPRM) software package. Secondly, two homogenized products have been generated from all of the 

passive and active data [38]. The error characterization of the merged passive and merged active 

product has been carried out through triple collocation and error propagation modelling [39]. Finally, 

active-passive datasets have been merged in a unique soil moisture product [16–18,40]. The rationale 

behind this approach is that calibration differences and other structural biases between the products in 

the individual product groups can be removed, before merging two products based on completely 

different retrieval principles. The merging procedure involves firstly rescaling the different products 

into common reference climatology by using AMSR-E and ASCAT-based soil moisture data as a 

reference. Such systems provide the most reliable climatology for the individual product groups. 

To supply a global coverage, a supplementary dataset is needed to scale the merged active and passive 

dataset into a globally-consistent climatology. Hence, the GLDAS-Noah (Global Land Data 

Assimilation System) data assimilation system [41] is used. Scaling is performed using cumulative 
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distribution function (cdf) matching [16,42–44]. The drivers of the merging approach are data 

availability and the relative accuracy of the products. 

Data availability (at a daily time step) and data sensitivity to vegetation are taken into account to 

combine the merged active and merged passive datasets. The average vegetation optical depth (VOD) 

over transitional regions (i.e., regions between sparsely and moderately vegetated areas) is calculated 

and used as the threshold for separating sparsely- from moderately-vegetated regions outside of the 

transition zones. Active soil moisture data are used for regions with moderate vegetation density 

(a VOD value higher than the threshold), whereas the passive product is used for (semi-) arid regions 

(a VOD value lower than the threshold) [38]. When, at a given location in transition zones, the 

correlation coefficient (R) between the merged active and passive soil moisture products is greater than 

0.65, both products are used [39]. This is done by simply averaging merged passive and merged active 

products for time steps where both products are available; if only one product type is available, that 

one is used [38]. In [16], it has been shown that this procedure increases the number of observations 

while minimally changing the accuracy of the merged soil moisture product. Moreover, it has been 

observed that when the active and passive merged datasets at a given location have an R lower than 

0.65, using them both reduces the quality of the merged product relative to the single products. 

The SM time series maps are provided on an almost daily basis, covering a period of more than 

thirty years, from 1979 to 2010. The spatial resolution of the ECV SM product is approximately  

0.25 degrees. Data are provided in volumetric units (m3·m−3), together with quality flags indicating the 

possible presence of dense vegetation, snow or a temperature below 0 °C. The ECV data used in this 

study are ASCAT acquisitions exclusively. 

3.2.2. ENVISAT ASAR WS SM Data 

The ENVISAT Advanced Synthetic Aperture Radar (ASAR) data are used in this research. The 

satellite was launched in 2002 by the European Space Agency (ESA), and the mission ended in April, 

2012. ASAR used a C-band (5.3 GHz) SAR, which acquired images in multiple modes, polarizations and 

at various incidence angles [45]. In particular, the ScanSAR modes included the Wide Swath (WS) and 

Global Monitoring (GM) modes, covering swaths of a 405-km width under varying incidence angles. The 

WS mode allowed a spatial resolution of 150 m, a radiometric accuracy of less than 0.6 dB and a 

maximum duty cycle (the measure of the fraction of the time the radar is transmitting) of 30%, whereas the 

GM mode provided data with a spatial resolution of 1 km, a radiometric accuracy of about 1.2 dB and a 

duty cycle of 100%. Although a number of soil moisture studies have been carried out by using ASAR GM 

images [29,46,47], the high level of noise affecting such data led us to focus on ASAR WS products. Given 

their higher spatial resolution and the possibility to collect theoretically up to 3–5 images a month, ASAR 

WS have the potential for better characterization and monitoring of soil moisture. As regards the best 

geometry of acquisition for the soil moisture retrieval, previous works demonstrated that more accurate 

results can be achieved by considering descending orbits [48,49], whereas others by using the ascending 

ones [50]. However, since the combination of ascending and descending orbits allows image acquisitions 

of a region up to 10-times a month, both orbits were considered here. Concerning the choice of 

polarization, the largest amount of VV acquisitions over the region under investigation (more than 300 

archive images available) led us to discard the HH-polarized data (less than 25 archive images available). 
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Radar backscattering mostly depends on both sensor parameters (incidence angle, polarization) and 

land characteristics, such as soil roughness, vegetation cover and soil moisture [51]. In particular, in 

the C-band, the sensitivity of the backscattering to the soil wetness decreases in the presence of  

vegetation [52]. However, it has been found in various studies that sparse or low vegetation cover has 

little influence on the backscattered signal and can generally be neglected. For example, in [53], the 

authors found that a grass cover (average height of 40 cm) had little influence on ERS-1 

(VV polarization) backscattering coefficients, attenuating the signal by less than 0.2 dB. Since all of 

the study sites are cultivated with relatively short grass, the influence of the vegetation can be 

considered insignificant on the ASAR WS dataset. 

The retrieval of soil moisture from multi-temporal SAR images has been effectively carried out in 

many studies with a change detection approach [54]. In this work, the change detection algorithm 

developed by TUW originally for ERS scatterometer images has been used [55]. It is based on the 

assumption of the time-invariance of surface roughness and vegetation cover, which allows differences 

in the backscatter to be directly related to the soil moisture variations. Such a hypothesis is met in the 

grassland areas under investigation, which we can assume to have undergone minimal variation during 

the period of observation. The original method has been successively adapted for ENVISAT ASAR 

GM data (1-km spatial resolution). A complete explanation of the algorithm can be found in [29], 

where the effects on backscattering due to varying incidence angle are taken into account by  

adopting a standard approach, that is the pixel-wise multi-temporal incidence angle normalization. The 

estimation of the maximum soil moisture retrieval error, which could affect the ASAR GM SM 

product, has been evaluated in [29] as:  

∆ ௠௔௫,ߴ ≈ ඨ൬1.2ܵ൰ଶ + ൬ܵߚ൰ଶ + 0.01 (2)

where S is the sensitivity of the backscatter coefficient to soil moisture variations, ߚ  the angular 

correction coefficient and Δσ° = 1.2 dB is the noise of the ASAR GM backscatter measurements. Since 

ASAR WS acquisitions are characterized by a lower noise (Δσ° < 0.6 dB), the maximum error of the 

soil moisture retrieval is expected to be smaller than for ASAR GM. Given the similarity of the ASAR GM 

and WS products and the promising results achieved by exploiting the former [31,56], the same technique 

has been used to handle the finer spatial resolution SAR data (150-m spatial resolution). ASAR WS scenes 

have been firstly geocoded, calibrated and resampled to a regular grid characterized by a sampling interval 

of 15 arcsec. Doing so, the spatial resolution of ASAR WS acquisitions has been degraded to that of the 

GM mode (1 km), with the advantage of achieving a much improved signal-to-noise ratio.  

By using the Corine Land Cover 2006 Map, the retrieved soil moisture maps have been then 

masked in order to exclude from the subsequent analysis pixels representing classes where the soil 

moisture values are not reliable (i.e., urban, evergreen broadleaf forest, water bodies, barren or 

sparsely vegetated areas, snow or ice). In the specific areas under investigation, only a few pixels 

representing water bodies in the region of Pallaskenry have been masked out. As a further indicator of 

the reliability of each single pixel, an additional masking has been carried out. In principle, the idea is 

to select only the points where the adaptation of the algorithm to the ASAR data works better. The 

temporal stability of soil moisture fields gives rise to an associated temporal stability in the backscatter 
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signal [57]. A strong correlation between local and regional backscatter is usually a good indicator of 

high sensitivity to soil moisture dynamics at the local scale. At locations with a weak correlation, either 

the backscatter response to soil moisture dynamics is dominated by noise and speckle or the backscatter 

characteristics are adversely influenced by factors, such as dense vegetation, complex topography or soil 

structure/texture characteristics, which inhibit the retrieval of reliable soil moisture estimates. Therefore, 

for each 1 km × 1 km ASAR pixel, the correlation between the time series of the local ߪ଴ and the 

average of the backscattering over the 25 km × 25 km area covering the ASAR one has been evaluated. 

There is no specific correlation value that is optimally applicable for the purpose of masking ASAR-based 

soil moisture products in general, as this value depends on backscattering mechanisms, environmental 

conditions and on the requirements of the intended application of the soil moisture data. In this study, a 

threshold of R2 = 0.3 was set based on the mentioned assumptions and the experience of other researchers 

working with ASAR data [58]. After the masking process, it has been observed that in all of the sites, the 

classes cropland/grassland mosaic and pastures occur over 90% of the ECV pixel areas. 

In order to compare the soil moisture expressed by the same unit (m3·m−3), the ASAR relative SM 

index values have been transformed by applying Equation (1).  

3.3. Regional Scale Analysis of SM Temporal Variability  

The ECV SM product was compared, on a regional scale basis, with the finer spatial resolution 

ASAR WS SM data and with the ground measurements. Bearing in mind the different temporal 

frequency of each dataset, only the ECV and in situ SM data corresponding to the ASAR WS 

acquisitions dates have been considered. The absolute soil moisture values derived from each sensor and 

their relative changes over time have been considered. This study mainly focused on the latter, aiming at 

an understanding of the capability of the ECV SM product in capturing soil moisture temporal variations.  

The geographical position of the in situ stations has been plotted on a georeferenced grid, and the 

surrounding regions that exactly coincide with the ECV pixels have been selected. Because of the 

masking process, the number of ASAR data in each ECV pixel is lower than the maximum obtainable. 

Specifically, when the ECV pixels are completely covered by the ASAR acquisitions, the percentage 

of available ASAR pixels in each site is: 92.1% for Kilworth, 80.5% for Pallaskenry and 94.7% for 

Solohead. Moreover, because of the variability of the ASAR coverage over the areas of interest, the 

number of accessible soil moisture values can change significantly in each acquisition taken during the 

period of observation. In order to make the subsequent analysis statistically consistent, only the ASAR 

acquisitions that cover the ECV pixels for more than the 50% of the available pixels (after masking) 

were considered in the study. For each ASAR acquisition, the average of the soil moisture values 

retrieved within the corresponding ECV cell has been taken into account for the dataset comparison. 

At first, ascending (A) and descending (D) ASAR acquisitions (soil moisture and backscattering) 

were compared separately with the ECV and in situ soil moisture values. The number of ASAR data 

temporally compatible with the other two datasets is reported in Table 2. Subsequently, two more 

studies have been carried out: in the first experiment, the whole set of ASAR WS data (AD) has been 

used together, whereas in the second one, ascending and descending SM values referring to the same 

day have been averaged (ADതതതത). 
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Table 2. Number of ascending and descending ASAR WS images temporally compatible 

with the ECV and in situ soil moisture (SM) data. 

Site Temporal Interval 
N. ASAR Ascending 

(~10:00 pm UTC) 

N. ASAR Descending 

(~11:00 am UTC) 
N 

KW 6/27/2007–09/15/2009 26 88 114 

PK 08/17/2007–09/15/2009 16 70 86 

SH 05/23/2007–09/15/2009 24 72 96 

The in situ SM values have been estimated by adopting two different approaches: 

A. Only the soil moisture measurements recorded at the time closest to the ASAR acquisitions 

have been used. 

B. The soil moisture values have been evaluated on a daily basis, by averaging the measurements 

recorded from 0:00 to 23:30 of the same day as the ASAR acquisition.  

Summarizing, according to the different approaches, seven comparisons have been performed 

between the ECV SM product and the other two datasets. Specifically: 

1. A_A: only ASAR ascending acquisitions, Approach A for the in situ values; 

2. A_B: only ASAR ascending acquisitions, Approach B for the in situ values; 

3. D_A: only ASAR descending acquisitions, Approach A for the in situ values; 

4. D_B: only ASAR descending acquisitions, Approach B for the in situ values; 

5. AD_A: both ASAR ascending and descending acquisitions, Approach A for the in situ values; 

6. AD_B: both ASAR ascending and descending acquisitions, Approach B for the in situ values; 

7. ADതതതത : both ASAR ascending and descending acquisitions, averaging the ASAR and the  

in situ soil moisture values on a daily basis. 

In addition, a seasonal comparison has been also carried out between the three datasets, aiming at 

evaluating the performance of ASAR and ECV soil moisture products in capturing the annual cycle of 

surface SM and its short-term variability. Since it has been demonstrated that the seasonal vegetation 

C-band signal is much weaker than the soil moisture signal [59], its effects are generally neglected in 

the retrieval algorithms [49]. However, the vegetation cycle or intense precipitation periods may 

reduce the quality of satellite soil moisture products. Therefore, long time series have been split into 

four seasons (i.e., winter (DJF), spring (MAM), summer (JJA) and autumn (SON)) and analysed in 

comparison with the in situ measurements, which are considered as a reference for the product  

quality assessment. 

The Pearson correlation coefficient (R) has been used to characterize the temporal agreement 

between each dataset (ECV, ASAR, and in situ) at each test site. However, due to the limited number 

of collocated measurements (approximately 100 for the annual analysis and consequently only around 

25 for the seasonal analysis), a certain chance exists that the obtained correlation levels are achieved 

by coincidence rather than a real statistical dependency. The null hypotheses of the non-significant 

correlation was tested using the Student’s t-test, which relates the correlation value to the number of 

measurements used to calculate it, in order to estimate the probability (p-value) of the achieved 

correlation to be a coincidence, i.e., not significant. The used threshold for accepting the null 

hypotheses was 0.025 (i.e., 2.5% chance for a statistical coincidence). It should be emphasized  
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that statistical significance does not mean that the correlation is high, but that the correlation estimate 

is reliable.  

3.4. Analysis of SM Spatial Variability  

Heterogeneity of terrain, vegetation cover and topography can make the soil moisture extremely 

variable even over small distances [60], a variability that the coarse spatial resolution of the ECV SM 

product may mask. Previous studies [61–63] used soil moisture measurements recorded in several  

in situ stations aiming at the understanding of soil moisture variability over relatively small distances. 

However, contradictory results have been found, highlighting the complexity of the phenomenon and 

thus the difficulty of accurately predicting the dynamics of the soil moisture in different areas.  

In this work, the SM spatial variability has been studied at the resampled ASAR scale (1-km spatial 

resolution after resampling). The aim is to investigate which geophysical factors (e.g., terrain 

composition, altitude, land cover) mainly affect the representativity of the ECV SM product.  

Firstly, the average of the soil moisture retrieved from the ASAR WS acquisitions over each  

ECV-sized cell has been compared with the coefficient of variation (CV) expressed as: 

ܥ ௝ܸ = ௝௝̅ߴߪ = ට 1ܰ − 1∑ ൫ߴ௜௝ − ௝ߴ௝൯ଶே௜ୀଵ̅ߴ̅ ݆ = 1,… 	ܯ, (3)

where N is the number of ASAR pixels within the ECV cell, ϑij is the soil moisture estimated in the i 
ASAR pixel and at time j and σj and ߴఫഥ  are the SM spatial standard deviation and mean, respectively. 

Successively, the ASAR SM time series values recorded in each pixel have been compared with the 

ECV SM data. Finally, correlation maps have been provided also on a seasonal basis. The objective of 

this analysis was to investigate the correlation patterns within the ECV cell and their relationship with 

specific soil characteristics in terms of texture, land cover and altitude.  

3.5. Error Characterization 

A statistical approach has been used to quantify the error terms, by computing the root mean square 

difference (RMSD). This signifies the closeness of two independent datasets representing the same 

phenomenon. Because of the complexity of the soil moisture phenomenon and the different spatial 

scale representativity, none of the investigated datasets can be assumed to be the truth, although the  

in situ measurements are normally considered as the reference. As a consequence, the RMSD does not 

provide a measure of accuracy, but represents the relative error of the soil moisture dynamic  

range [64]. The RMSD varies with the variability within the distribution of error magnitudes and with 

the square root of the number of data, as well as with the average-error magnitude (MAE) [65]. Since 

the ASAR, and the in situ SM values are expressed in degrees of saturation, while the ECV SM 

product is given in volumetric soil moisture; and because of their different spatial resolution, the 

RMSD is generally affected by a bias. Therefore, all of the SM datasets have been expressed in the 

same unit (m3·m−3), and the bias has been removed, achieving a better and more reliable estimate of 

the error by evaluating the centred (unbiased) RMSD: 
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ܦܵܯܴܾݑ  = ඨ1ܰ෍ ൬ቀ൫ ௦ߴ − ௦൯ߴ − ൫ߴ௦௜௧௨ − ௦௜௧௨൯ቁଶ൰ே௡ୀଵߴ  (4)

where N is the number of samples, ϑs and ϑsitu are the soil moisture values retrieved from the satellite 

acquisitions and measured in situ and ߴ௦ and ߴ௦௜௧௨ their correspondent means.  

4. Results 

4.1. Soil Moisture Temporal Variability 

In Figure 2, the soil moisture time series retrieved from ascending and descending ASAR WS 

acquisitions are shown with the ECV values and the in situ continuous measurements. The 

accumulated daily precipitation values are displayed in Figure 2. 

Figure 2. Temporal trend of the soil moisture in the sites under investigation. The in situ 

instruments provide measurements every 30-min. The soil moisture retrieved from 

ascending and descending ASAR acquisitions is compared with that provided by the ECV 

product. The total daily precipitation is also reported. 

 

Comparable trends are seen for Kilworth and Pallaskenry, where the ECV SM values are about 

25% and 31% greater than those retrieved from ASAR, respectively. For Pallaskenry, there is good 



Remote Sens. 2014, 6 8201 

 

agreement with the temporal trend of the in situ measurements. While the ECV SM varies in a 

relatively small interval (0.1 m3·m−3), a more significant temporal variation occurs in the ASAR time 

series. The same behaviour is much more evident in the in situ measurements, which vary in an 

interval of approximately 0.25 m3·m−3. Generally, the ECV SM values tend towards the highest in situ 

values. On the contrary, the driest ground conditions are not well represented by the ECV product. 

Such an observation confirms what has already been shown in other studies [66], where in situ 

measurements and the soil moisture derived from scatterometer acquisitions have been compared. The 

bias between ASAR and ECV soil moisture is smaller in Solohead, while neither dataset follows the 

temporal variation exhibited by the in situ time series. In this case, the ECV SM values vary in a small 

interval (0.21–0.32 m3·m−3) below the average of the soil moisture ground measurements 

(0.35 m3·m−3) recorded during the period under investigation. Contrary to the other two sites, here the 

best agreement between absolute SM values (ECV, ASAR and in situ) occurs in the driest conditions. 

Such a different behaviour of the soil moisture may be explained as a consequence of the low 

infiltration capacity of the clay, whose percentage is larger in the soil at Solohead than in the other 

regions studied. The comparison between the soil moisture retrieved from the remote sensing 

acquisitions and the in situ measurements show very similar results for both approaches, “A” and “B”. 

The daily standard deviation of the in situ values for all sites is 0.006 on average. This means that the 

variation of soil moisture during the day is negligible. Therefore, the value recorded at the time of the 

ASAR acquisition (Approach “A”), does not differ significantly from the daily mean (Approach “B”).  

Table 3. Correlation values evaluated between each pair of soil moisture dataset, by 

adopting Approach “B”. No significant difference has been observed between the 

Approaches “A” and “B”. Because of the very small SM daily variation, the use of both 

ascending and descending ASAR SM data or their average leads to similar results. 

Correlation levels are statistically significant (p < 0.025). 

R ASAR vs. ECV ASAR vs. in situ ECV vs. in situ 

Orbit KW PK SH KW PK SH KW PK SH 

A 0.76 0.79 0.88 0.63 0.74 0.71 0.52 0.73 0.60 
D 0.77 0.72 0.77 0.78 0.74 0.74 0.74 0.69 0.77 ADതതതത 0.77 0.73 0.80 0.76 0.75 0.76 0.69 0.69 0.75 

Table 4. Unbiased RMSD evaluated for each soil moisture dataset comparison. ubRMSD 

unbiased RMSD. 

ubRMSD ASAR vs. ECV ASAR vs. in situ ECV vs. in situ 

Orbit KW PK SH KW PK SH KW PK SH 

A 0.06 0.07 0.06 0.06 0.06 0.05 0.04 0.06 0.05 
D 0.06 0.06 0.06 0.05 0.06 0.06 0.05 0.05 0.06 ADതതതത 0.06 0.06 0.05 0.05 0.06 0.05 0.05 0.06 0.06 

Moreover, in terms of correlation and error (Tables 3 and 4), the results are essentially independent 

of the choice of the ASAR dataset (ascending, descending or both of the acquisitions). It should be 

noted that the number of ascending acquisitions is much smaller than the number of descending ones. 
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In general, a lower degree of correlation occurs when only the ascending ASAR SM time series are 

used, with the exception of Pallaskenry. However, statistically significant correlation levels (p < 0.025)  

and low unbiased RMSD (ubRMSD) between the independent and multi-scale soil moisture time 

series have been noted in all of the sites. Specifically, the ASAR vs. ECV SM analysis demonstrate 

high correlations (KW: R = 0.76–0.77, PK: R = 0.72–0.79, SH: R = 0.77–0.88), associated with a quite 

low ubRMSD generally equal to 0.06. High agreement has been found between the ASAR and in situ 

SM time series, with a degree of correlation larger than 0.71 and ubRMSD ranging between 0.05 and 

0.06, with the only anomaly being the ascending ASAR SM data at Kilworth. Probably due to the 

spatial scale difference, the worst outcome in terms of correlation has been estimated between ECV 

and in situ SM data. Nevertheless, R is still quite high (generally higher than 0.6), and the ubRMSD 

varies in the interval 0.04–0.06. 

Figure 3. Temporal evolution of ASAR, ECV and in situ SM anomalies estimated in the 

2007–2009 time interval. 

 

Soil moisture anomalies have been estimated for all three datasets, during the time interval  

2007–2009 (Figure 3). The seasonal cycles are well represented by the temporal evolution of the 

ASAR and in situ SM anomalies, which exhibit similar positive higher values in winter and negative 

lower values in summer. On the other hand, the poor variability of the ECV SM data leads to a very 

small range of variation of the associated anomalies. Despite the short period of observation (about 

two years), it is still possible to detect atypical moisture conditions through the analysis of ASAR and 

in situ SM anomalies. Specifically, in 2007, a drier autumn occurred at all sites compared to 2008. 
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Based on the in situ measurements, in Kilworth and Solohead, the summer of 2008 was drier than the 

previous and following year. While ASAR SM data are able to capture such a condition, the ECV SM 

product does not detect any significant anomaly. In Pallaskenry, similar dry soil conditions are 

revealed by the computation of in situ, ASAR and ECV SM anomalies. Successively, in 2009, a wetter 

summer occurred in Kilworth and Solohead, where the SM anomalies estimated by using all three 

datasets are very close to zero, meaning that the soil moisture was close to the average evaluated over 

the whole period of observation (2007–2009). In Pallaskenry, the in situ and ASAR anomalies are 

similar to those recorded in the summer of the previous year; however, the ECV SM anomalies hover 

about the null value, thereby suggesting wetter conditions compared to the previous summer. 

4.1.1. Seasonal-Based Analysis 

To investigate the ability of ASAR and ECV SM products to capture the annual cycle of surface 

SM and its short-term variability, a seasonal comparison has been carried out. For each dataset 

comparison, the correlation R, the unbiased RMSD and the normalized standard deviation (SDV) have 

been estimated and plotted in the Taylor diagrams in Figure 4. The normalized standard deviation is 

defined as the ratio between the standard deviations of soil moisture product and in situ measurements:  ܸܵܦ = ௜௡ߪௌெߪ ௌ௜௧௨ (5)

Figure 4. Taylor diagrams illustrating the remote sensing soil moisture product statistics 

against the in situ observations. While the seasonal ECV SM values are less variable than 

the in situ records (left side of the dotted arc), the ASAR SM data exhibit a larger 

variability (right side of the dotted arc). By comparing both the satellite datasets with the 

ground measurements, it has been found that the highest correlation occurs in spring and 

autumn. On the contrary, in the extremely wet conditions in winter or relatively dry 

summer seasons, a very poor agreement has been found between both ASAR and ECV SM 

time series and ground measurements.  
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Figure 4. Cont. 

 

In the Taylor representation, the SDV is displayed as a radial distance, with R as an angle in the 

polar plot. The point defined by R = 1 and SDV = 1 represents the in situ measurements. The distance 

to this point is evaluated as: ܧଶ = ଶܸܦܵ + 1 − ܸܦ2ܵ ∙ ܴ (6)

which is also expressed as a function of the RMSD and bias: ܧଶ = ሺܴܦܵܯଶ − ௜௡ߪଶሻݏܽ݅ܤ ௦௜௧௨ଶ  (7)

The best agreement between the different remote sensing SM products and the in situ measurements 

occurs at a short distance to the R = 1, SDV = 1 point. 

4.1.2. ASAR vs. In Situ SM 

The seasonal Taylor plots in Figure 4 with the ASAR SM symbols, always located on the right side 

of the arc with a radius equal to one, highlight the larger variability of the ASAR SM mean with 

respect to the local in situ measurements. For both Solohead and Kilworth, the highest correlation 

value occurs in spring (MAM), with the poorest agreement in winter (DJF) and summer (JJA)  

(Figure 4). For Pallaskenry, similarly high correlations are seen in autumn (SON) and spring, while the 

lowest correlation occurs in winter (Table 5). However, in this case, the p-value is 0.4, making the 

analysis statistically unreliable. The seasonal-based analysis shows the poorest agreement generally 

occurring in Pallaskenry (Table 5). 

Concerning the error estimation, no significant seasonal variations are seen across the sites. In fact, 

the ubRMSD ranges between 0.03 and 0.06. The only exception occurs in Solohead, where higher 

values (0.07–0.08) are observed in all the seasons, except in winter.  
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Table 5. Seasonal correlation (R) and unbiased RMSD (ubRMSD) between ASAR and  

in situ SM datasets (winter: DJF; spring: MAM; summer: JJA; autumn: SON). The number 

of available data (n) and the p-values (p) are also reported. 

 Kilworth Pallaskenry Solohead 

Seasons n R p ubRMSD n R p ubRMSD n R p ubRMSD 

DJF 23 0.37 0.04 0.05 23 0.06 0. 0.05 18 −0.05 0.4 0.04 

MAM 18 0.89 <0.001 0.03 15 0.52 <0.025 0.06 17 0.84 <0.001 0.08 

JJA 38 0.39 <0.025 0.05 25 0.38 0.03 0.06 34 0.60 <0.001 0.08 

SON 35 0.74 <0.001 0.04 24 0.55 <0.025 0.05 27 0.66 <0.001 0.07 

4.1.3. ECV vs. In Situ SM 

As the ECV SM symbols are always on the left side of the arc with a radius equal to one (Figure 4), 

this indicates that the ECV values are less variable than the in situ measurements. The seasonal 

comparison between ECV and in situ SM data (Table 6) confirmed what has been generally found in 

the previous analysis: the best agreement is achieved in spring and the worst in winter at all sites. 

However, the results of the analysis carried out for the winter datasets are characterized by high  

p-values, indicating less statistical reliability. At the same time, low correlation values, with p < 0.025, 

have been observed also in summer. This suggests that the retrieval algorithm may be sub-optimal in 

very wet or in the driest conditions. 

Table 6. Seasonal correlation (R) and unbiased RMSD (ubRMSD) between ECV and  

in situ SM datasets (winter: DJF; spring: MAM; summer: JJA; autumn: SON). The number 

of available data (n) and the p-values (p) are also reported. 

 Kilworth Pallaskenry Solohead 

Seasons n R p ubRMSD n R p ubRMSD n R p ubRMSD 

DJF 23 0.20 0.18 0.04 23 −0.09 0.34 0.04 18 0.13 0.3 0.04 

MAM 18 0.92 <0.001 0.06 15 0.85 <0.001 0.05 17 0.86 <0.001 0.05 

JJA 38 0.43 <0.025 0.04 25 0.48 <0.025 0.05 34 0.57 <0.001 0.05 

SON 35 0.78 <0.001 0.05 24 0.77 <0.001 0.04 27 0.75 <0.001 0.05 

The highest ubRMSD occurs in spring, varying between 0.05 and 0.06. However, no significant 

variations are noted in the other seasons and in every site. (Table 6)  

4.1.4. ASAR vs. ECV SM 

Regarding the ASAR-ECV SM comparison (Table 7), the highest correlation values are in  

spring in the Kilworth and Pallaskenry sites and in winter in Solohead. The lowest correlation values 

are in winter for Kilworth and Pallaskenry and in summer for Solohead. Different to the  

previous comparison, the correlation between ASAR and ECV SM datasets is less sensitive to the 

season. The highest variability in the seasonal R values can be observed in Kilworth (R = 0.62–0.84), 

whereas an even smaller range of variation has been evaluated for Pallaskenry (R = 0.53–0.66) and 

Solohead (R = 0.70–0.78). As the p-values are lower than 0.025, all of the results can be regarded as 

statistically reliable. 



Remote Sens. 2014, 6 8206 

 

Table 7. Seasonal correlation (R) and unbiased RMSD (ubRMSD) between ASAR and 

ECV SM datasets (winter: DJF; spring: MAM; summer: JJA; autumn: SON). The number 

of available data (n) and the p-values (p) are also reported. 

 Kilworth Pallaskenry Solohead 

Seasons n R p ubRMSD n R p ubRMSD n R p ubRMSD 

DJF 23 0.62 <0.001 0.04 23 0.53 <0.025 0.04 18 0.78 <0.001 0.02 

MAM 18 0.84 <0.001 0.06 15 0.66 <0.025 0.05 17 0.72 <0.001 0.04 

JJA 38 0.66 <0.001 0.04 24 0.60 <0.001 0.05 34 0.70 <0.001 0.04 

SON 35 0.71 <0.001 0.05 24 0.59 0.001 0.05 27 0.77 <0.001 0.04 

Regarding the ubRMSD, the lowest errors occur in winter in all of the sites, although in Kilworth, 

the same value has been found in summer. In other seasons, there is minimal or no variability at  

all sites.  

4.2. Soil Moisture Spatial Variability 

As a measure of the spatial variability of the soil moisture, for each ASAR acquisition, the 

coefficient of variation (CV) has been plotted as a function of the mean of the SM (Figure 5). 

Furthermore, seasonal values are highlighted with different colours. In wetter conditions, the soil 

moisture is less variable for all sites. As a consequence, in winter, the soil moisture is more 

homogeneously distributed, whereas in summer, high spatial variability occurs. The trend of the CV 

approximates a decreasing power function, with a high coefficient of determination (R2 > 0.87). Our 

results agree with the findings reported in [60]. However, it can be observed that, above values of  

0.2 m3·m−3, the CV tends to vary linearly with the mean of the soil moisture, as reported also in [67,68].  

Figure 5. Coefficient of variation of the ASAR SM mean, evaluated for each ASAR 

acquisition over the ECV-sized pixels, during the observation period 2007–2009.  

Seasonal-based values are highlighted by different colours. (Winter: DJF; Spring: MAM; 

Summer: JJA; Autumn: SON). 
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Figure 5. Cont. 

 

Figure 6. (Left) ASAR SM vs. ECV SM correlation maps evaluated for each ASAR pixel. 

(Middle) DEM maps. (Right) Soil maps. 

 



Remote Sens. 2014, 6 8208 

 

Figure 6. Cont. 

 

Each ASAR SM local time series value has been successively correlated with the ECV SM data 

(Figure 6, left). In general, there are quite high R values across all three sites. The highest correlations are 

seen in Kilworth and Solohead, although the top left corner of the Solohead ECV-sized pixel has quite a 

low correlation. The comparison with the DEM and soil maps (Figure 6, middle and right) highlights the 

influence of the combination of altitude and soil type on the soil moisture variations and, hence, on the 

representation of the ECV SM product. The soil moisture behaviour over those areas characterized by 

lower altitudes is better described by the ECV SM dataset (high correlation values). These regions mainly 

correspond to zones where the soil type is classified as deep, well-drained, mineral and mineral alluvium. 
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Figure 7. ASAR SM vs. ECV SM correlation maps evaluated for each ASAR pixel and in 

each season. (Top) Kilworth; (Middle) Pallaskenry; (Bottom) Solohead. 

 

The soil moisture spatial analysis has been carried out also on a seasonal basis. The correlation and 

ubRMSD values between ASAR SM time series collected in each 1 km × 1 km pixel and the ECV SM 

dataset are shown in Figures 7 and 8, respectively. A seasonal cycle of the correlation can be noted: in 

the spring and autumn seasons, the highest values are reached; in summer, R exhibits lower values, as 

well as in winter. Conversely, the seasonal ubRMSD shows a different behaviour, with higher values 

generally occurring in spring. In the other seasons, no significant variation of the ubRMSD can be 

observed. Such seasonal variation is slightly different in Solohead, where high and more homogenously 

distributed ubRMSD values occur in spring and summer, while generally lower values can be observed 

in winter and autumn in most of the ASAR pixels. 
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Figure 8. ASAR SM vs. ECV SM ubRMSD maps evaluated for each ASAR pixel and in 

each season. (Top) Kilworth; (Middle) Pallaskenry; (Bottom) Solohead. 

 

5. Discussion  

As a contribution to the validation of the innovative CCI-ECV SM global product, in this work, a 

triple way comparison has been carried out for the first time for such a long time series of SM 

observations collected using different sensors and provided at very different spatial resolution. The 

results achieved by comparing the three soil moisture datasets temporally and spatially demonstrate the 

capability of the ECV SM product in representing the soil moisture variability, despite its coarser 

spatial resolution. The comparison of the ECV SM product with the ASAR WS and in situ time series 

has shown the capability of the former to capture the temporal dynamics of soil moisture in all three 

test sites. The ECV SM dataset is highly correlated with the finer spatial resolution ASAR SM product 
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and with the in situ measurements. Such outcomes are consistent with the results obtained in previous 

works. For instance, in [20], the authors related ECV SM data and in situ measurements taken at 

several stations worldwide, representing different climate zones and characterized by different 

topography, but mostly located over grassland or agricultural fields. They found correlation values 

ranging between 0.5 and 0.7 and ubRMSD equal to 0.05–0.06, which are in agreement with what has 

been observed in the present study. In [50,69], correlation values calculated between ASCAT SM and 

in situ values taken in humid regions are similar to those calculated here between ECV SM data (in our 

work, generated by using only ASCAT acquisitions) and in situ measurements. Our results also agree 

with those in [29], where the soil moisture retrieved from ASAR GM acquisitions has been compared 

with that derived from ERS scatterometer data and in situ measurements. 

It should be noted that the lowest correlations have been estimated when only ascending (10:00 pm) 

ASAR acquisitions have been used, while improved outcomes have been achieved by using images 

taken during the descending orbit (10:00 am). Similar findings have been reported in other papers, 

where ASCAT- and/or AMSR-E-derived SM data have been analysed [50,69,70]. For instance,  

in [69], the authors suggest the use of morning measurements, because of the day-time decoupling that 

could happen in the afternoon due to the non-hydraulic equilibrium of the soil.  

By analysing the satellite soil moisture values, it has been observed that those provided by the ECV 

product are generally higher than those derived from the ASAR WS acquisitions. The reason may be 

related to the change detection algorithm used to retrieve the soil moisture from the SAR images. It is 

based on parameters that have been shown to be sensitive to the season [71] and on assumptions 

derived from the use of SM time series by ERS scatterometer data [29]. Nevertheless, we have 

demonstrated here that ASAR WS data are suitable to assess the quality of the coarser spatial resolution 

ECV SM product. By considering the in situ soil moisture dataset as the reference, high correlation 

values and small bias have been estimated between ASAR SM time series and the ground measurements.  

The comparison between the three soil moisture datasets shows that the temporal variability of the 

ECV SM product is lower than for the ASAR SM and in situ data, as noted previously in [20]. The 

different spatial scale of the SM products used may lead to such a behaviour [29]. In particular, the 

processing performed to generate the ECV SM data, which are scaled to the GLDAS-Noah model, 

yields a coarser spatial resolution with a limited ability to track the seasonal soil moisture variability. 

At the same time, the absolute SM values variations are reduced throughout the whole period of 

observation. In this regard, the analysis of the soil moisture anomalies during approximately two years 

of observations has shown a seasonal periodicity, which is particularly evident in the ASAR and in situ 

SM datasets, rather than in the ECV SM time series. Higher anomalies have been observed in winter 

and lower ones in summer. Specifically, the ASAR and in situ soil moisture products highlight the 

occurrence of anomalous dry and wet summers in Kilworth and Solohead in 2008 and 2009, 

respectively, whereas the ECV SM product fails to capture dry extremes. However, it should be noted 

that anomalies were calculated with respect to just over two years of data. For this specific study, only 

ASCAT data were available to generate the ECV product. As has been already observed in [66], in the 

driest conditions, the SM retrieved from only scatterometer acquisitions tends to overestimate the real 

moisture content as measured by in situ instruments. The very small anomalies of the ECV SM time 

series reflect this trend. The poor capability of the ECV SM product in capturing the driest and wettest 

soil conditions has been highlighted also in a seasonal-based analysis. It demonstrated that very low 
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correlations occur in winter and summer between both satellite products and the ground soil moisture 

dataset, whereas the best agreement has been achieved in spring and autumn. Winter is the wettest 

season in Southern Ireland. When heavy and/or continuous precipitation occur over a poorly-drained 

soil (e.g., Solohead), a water layer could persist on the surface, reducing the satellite microwave 

backscattering sensitivity to soil moisture and, hence, providing incorrect estimates of the moisture 

content. Summer is the driest season, during which the vegetation reaches the maximum growth, which 

may affect the quality of the retrieved soil moisture from SAR and scatterometer images. Furthermore, 

when the change detection algorithm is applied on humid sites by using a limited number of images, 

the sensitivity of the microwave signal to soil moisture (the difference between the driest and wettest 

signal) is likely to be underestimated [72,73]. This can explain the low correlation between ASAR and 

in situ SM data in winter and summer. 

Concerning the soil moisture spatial variability study, while published works are typically carried 

out through geostatistical analysis by using hydrological models and in situ networks over rather wide 

regions, in this work, the spatial distribution of soil moisture has been investigated at the ASAR scale 

(1 km) within a smaller area (i.e., the ECV size pixel). In doing so, actual observations covering the 

whole area have been used, without the need for adopting any particular model. This approach 

facilitated an understanding of the extent to which geophysical factors, such as soil texture, terrain 

composition and altitude, affect the retrieved ECV SM product values in temperate grasslands. The 

spatial variability of the soil moisture retrieved from the ASAR WS acquisitions over each ECV-sized 

pixel shows that wet conditions lead to more homogeneous moisture content across the area, while in 

the driest conditions, a significant variation in soil moisture values can occur. Therefore, in winter, the 

distribution of soil moisture is rather homogenous over the ASAR pixels within the ECV cells. On the 

contrary, a larger spatial variability has been observed in summer. This may be due to the frequent, but 

localized, heavy shower activity, which characterizes summer in Ireland. Under such conditions, the 

combination of soil texture type, terrain composition, evapotranspiration and percolation processes and 

water table levels is likely to play a significant role in the soil moisture dynamics. In the present work, 

we have been able to demonstrate how CV varies against the ASAR mean values for a full range of 

moisture conditions, and this highlights the seasonal variability. The trend of the CV approximates a 

decreasing power function, with a high coefficient of determination (R2 > 0.87). Winter mean soil 

moisture values are associated with the lowest and most stable CV. On the contrary, summer mean soil 

moisture values correspond to high and more variable CV values. Our results agree with the findings 

reported in [60], where the authors described the SM spatial variability for different types of soil 

texture. In particular, the authors note that the CV of sandy soil increases as the soil dries and reaches 

its maximum near the residual moisture content. However, it can be observed that above values of  

0.2 m3·m−3, the CV tends to vary linearly with the mean of the soil moisture. This result is in line  

with [67,68], where, focusing on soil moisture behaviour in humid grassland, the authors found the 

relationship between CV and the mean soil moisture to be a decreasing linear function. In [74], the 

authors observed that in wet catchments in New Zealand, the variability decreases with increasing 

moisture content, whereas it increases in the drier Australian catchments. They assert that these 

differences in behaviour are due to differences in the seasonal patterns of controlling processes 

associated with seasonal changes in spatial mean soil moisture, particularly the lateral flow processes, 
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which are related to climatic differences. Our results underline the ability of ASAR WS retrieved SM 

data to track this full spectrum of varying moisture content and seasonal behaviour.  

The comparison between soil moisture time series in each ASAR pixel and in the corresponding 

ECV cells has shown high R values, larger than 0.56 on average at all sites. This highlights the 

effectiveness of the ECV SM product in representing the soil moisture conditions, despite the coarse 

spatial resolution. A further confirmation of the quality of the ECV SM product is given by the fact 

that the seasonal R values are quite homogenously distributed over all sites, following the same 

periodic trend observed by carrying out the regional based analysis (higher R values in spring, lower in 

winter). By studying the spatial distribution of the correlation between ASAR and ECV SM, it has 

been observed that the soil moisture behaviour over those areas characterized by lower altitudes is 

better described by the ECV SM dataset (high R values). These regions mainly correspond to zones of 

deep, well-drained, mineral and mineral alluvium soils. On the contrary, areas located at a higher 

altitude, mainly characterized by poorly-drained soil, show lower correlation between the two satellite 

SM products. In addition, high slope variability contributes to the further loss of correlation. Indeed, 

infiltration, drainage and runoff depend on the slope angle. Steeper slopes generally cause lower 

infiltration rates, rapid subsurface drainage and higher surface runoff [75]. Since ASAR WS acquisitions 

are not necessarily taken at the same time as the ECV satellite data, different moisture content is likely to 

be detected by each product over these regions. The lower spatial correlation observed in Pallaskenry, 

which is characterized by a more complex topography and higher altitude, supports such a hypothesis.  

6. Conclusions  

The representativeness of the global soil moisture product provided in the framework of the ESA 

CCI programme has been investigated through the use of finer spatial resolution ASAR WS data and 

ground measurements across three grassland sites in Southern Ireland. In doing so, this is the first time 

a comparison has been carried out between three sets of independent observations from different 

sensors at very different spatial resolutions for such a long time series. Neither dense in situ station 

networks, nor hydrological models have been used, but the results obtained from the adopted approach 

are consistent with those reported in other papers using different sensors and classical methods. 

Therefore, the applicability and reliability of the approach presented has the potential to be an efficient 

and cost-effective validation method for low resolution SM products.  

Both the regional-based and the ASAR pixel-based analysis demonstrated that there is a high 

correlation between the different soil moisture products. By carrying out the regional-based analysis, it 

has been observed that for all of the sites, the correlation between ASAR and ECV SM datasets varies 

between 0.72 and 0.8 (ubRMSD = 0.05–0.07). Slightly lower values have been found when the 

satellites products are compared to the in situ SM time series (ASAR vs. in situ: R = 0.63–0.78, 

ubRMSD = 0.05–0.06; ECV vs. in situ: R = 0.52–0.77, ubRMSD = 0.04–0.06). The ASAR pixel-based 

analysis highlighted the presence of high correlation patterns (R = 0.7–0.8) in each area under 

investigation. Moreover, despite the topography and soil type playing a role in the quality of the ECV 

SM product, we found limited differences in the correlation values across all of the studied areas, 

where R is generally higher than 0.6. Such results highlight the capability of the ECV SM product to 

describe the actual moisture dynamics in quite a large area (0.25 × 0.25 degrees), with a rather low 



Remote Sens. 2014, 6 8214 

 

ubRMSD. However, the evaluation of the SM anomalies revealed a limitation in the ECV product, 

which is its poor capability in capturing the wettest and driest conditions. It is important to be aware of 

this when the product is used in climate change studies, as not capturing the extremes may lead to 

underestimation of evapotranspiration in summer and underestimation of surface runoff in winter. On 

the basis of these observations, we can conclude that further tuning of the algorithms is necessary in 

order to provide a higher quality product and, hence, gain more confident use of the ECV SM global 

dataset for climate change studies.  

The recently improved and updated global ECV SM product will be released in mid-2014, after 

testing and validation. Quality assessment will be carried out by using in situ measurements, ASAR 

WS, as well as Sentinel-1 data, as soon as they become available. In order to verify any improvement 

of the new ECV SM dataset, the analysis will be performed by considering the same test sites. 

However, with the aim of comprehensively understanding the ECV global product, it will be necessary 

to test it with further studies in other regions worldwide. Therefore, different climate zones, various 

soil types and topography will be taken into account. Since the Irish sites are mainly located in grassland 

areas, in this work, it has not been possible to investigate the sensitivity of the soil moisture to the land 

cover. Yet, it is a major factor to take into account when soil moisture dynamics are studied. Therefore, 

future work will address such issues by selecting more heterogeneous regions, where it will be possible 

to establish how specific land covers affect the soil moisture provided by the ECV product. 
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