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Abstract. The flux of sensible heat from the land surface is related to the average rate of dissipation
of temperature fluctuations in the atmospheric surface layer through the temperature variance budget
equation. In many cases it is desirable to estimate the heat flux from measurement or inference of
the dissipation rate. Here we study how the dissipation rate scales with atmospheric stability, using
three inertial range methods to calculate the dissipation rate: power spectra, second order structure
functions, and third order structure functions. Experimental data are analyzed from a pair of field
experiments, during which turbulent fluctuations of velocity and temperature were measured over a
broad range of neutral and unstable atmospheric flows. It is shown that the temperature dissipation
rate scales with a single convective power law continuously from near-neutral to strongly unstable
stratification. The dissipation scaling is found to nearly match production in the near-neutral region,
but to be consistently lower than production in the more convective regimes. The convective scaling
is shown to offer a simplified means of computing sensible heat flux from the dissipation rate of
temperature variance.

1. Introduction

We study the average dissipationrate (¢4) of temperature variance in the atmospher-
ic surface layer (ASL) to investigate the range of stratification for which convective
scaling is appropriate. We restrict our analysis to unstable and neutral thermal strat-
ification in the ASL. This study is motivated by the contradictory scaling forms
found for ¢4 in the literature and the belief that a convective scaling form for €5 will
streamline greatly the estimation of heat fluxes from measured dissipation rates.
The vertical flux of sensible heat is related to ¢; through the temperature variance
budget which, under stationary and horizontally homogenous conditions, is written

00 19{wh?

j— w0 —_— = = € 1
W) e ~ 2 0 ’ M)
where © is the mean temperature, § the fluctuation about ©, w represents the
fluctuation in the vertical velocity, the vertical direction is z (upward from the land
surface), and (.} is the averaging operator. The first term in (1) is the average rate
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of production of temperature variance by interaction of the vertical temperature
flux (wé) and the vertical mean temperature gradient. The second term represents
the divergence of the turbulent flux of temperature variance. The third term is
the average rate at which the temperature variance is dissipated, where ¢ =
D{(df/dz,)(df/dz)), and D is the thermal diffusivity. Summation is implied on
repeated subscripts. Note that (1) is written as a budget for 1/2(82), consistent with
the turbulent kinetic energy (TKE) budget. The following scaling parameters will
be applied to (1)

2

where u, is the friction velocity, 7y the surface shear stress, p the average air
density, u represents the fluctuation in the streamwise velocity component, and O,
is the temperature scaling parameter. Substituting (2) into (1) we write the budget
equation
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From Monin—Obukhov similarity theory
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where the similarity functions ®z(z/L) and ®.,(z/L) are the normalized rates of
production and dissipation, z/ L is the dimensionless stability parameter, and the
Obukhov length is defined as
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Substituting (4) into (3) and normalizing by u..©2/kz yields
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where A represents the dimensional transport term. For context, we provide a brief

review of the literature regarding the scaling of these dimensionless terms with
surface-layer stratification, as represented by the stability parameter (z/L).
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The normalized production term has typically been expressed by the general
Businger—Dyer interpolation formula

2N\ 172
¢y = ay (1 - ﬂHI) (7N

where oy and [y are empirical constants taken from experiments; typically,
ay = 1 and By = 16 (Brutsaert, 1982). Hogstrom (1988) provided a recent and
detailed review of the scaling of ® . All, save one, of the forms for ® g cited by
Hogstrom provide for scaling which asymptotes to (—z/ L)'l/ 2 for large negative
(convective) values of z/ L. The one exception is Zilitinkevich and Chalikov (1968),
where production is scaled as free convection (—z/L)~'/3 in the convective limit.
The exponent in (7) is a much more fundamental parameter than the constants
ayg and Py for it represents the asymptotic scaling of the temperature gradient
(production) in the convective limit. Kader and Perepelkin (1984) described the
convective scaling reasoning and proposed an abruptly discontinuous scaling form
that captures the constant value of ® in the neutral limit and the —1/3 scaling in
the convective limit

z
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This idea of subdividing the ASL into layers has developed through the theoret-
ical work of Betchov and Yaglom (1971) and studies by Kader (1988), Kader
and Perepelkin (1989), and Kader and Yaglom (1990, hereafter KY), leading to
the establishment of a three sublayer model of the ASL. KY provided extensive
empirical support to the model and showed that the normalized production scales
in the individual sublayers as

8
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where the constants have been modified to represent the inclusion of &k (=0.4), as
K'Y made a point of omitting £ from their analysis.

The dissipation term has received less direct study than the production term.
Most authors that have addressed this term based their results on measurements
made over narrow ranges of the stability parameter (z/ L) and presented the nor-
malized dissipation as some percentage of measured production. In which case,
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the exponent in the power law scaling of ® 5 would be assumed to apply to ®.,
as well. A review of the literature shows that the production: dissipation ratio in
selective field studies varies over a range from 0.7 to 3.4 (e.g. Champagne et al.,
1977; Antonia et al., 1979; Bradley et al., 1981), with the mismatch attributed to
the transport term. Wyngaard and Cote (1971) measured the transport term and
concluded that it was an order of magnitude smaller than production, and that it
varied from being a local sink at low values of —2/ L to being a local source in the
more convective cases. This is an important point, since the transport term must
vary with height. In fact, as a divergence the transport term will not contribute to
the global energy but rather will vanish when integrated over the full atmospheric
boundary layer (ABL). For a more in depth review see Hogstrom (1988; 1990). KY
computed the average dissipation rate from power spectral scaling in the inertial
subrange and reported the following fit to their three sublayer model

3, =084 <—%) <0.04
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From (9) and (10), we note that the implied production : dissipation ratio varies
from 1.14 in the near-neutral region to 1.42 in the free convective region. This
positive increase in the difference (® 7 — ®.,) with height differs from the results of
Wyngaard and Coté (1971) and it seems counter intuitive as we expect production to
be greater near the wall with transport upward to support dissipation in the higher
regions. Moreover, the decision to present separate model fits in the dynamic-
convective and free-convective sublayers seems questionable for a variable such
as ®.,, which is scaled by the same parameters in each of these two sublayers.

As alluded to above, knowledge of dissipation rates may be used to estimate
the vertical fluxes between the Earth’s surface and its atmosphere. This approach
is used most often over the open ocean (Fairall and Larsen, 1986; deLeonibus and
Simpson, 1987; Skupniewicz and Davidson, 1991; and Edson e? al., 1991), where
more traditional methods such as eddy correlation become problematic due to ship
motion. This approach is also useful for inferring heat fluxes from dissipation rates
obtained from optical remote sensing instruments such as scintillometers (Andreas,
1988; Hill et al., 1992) and lidar (Eichinger et al., 1993). Regardless of the specific
circumstances, all approaches to estimate fluxes from dissipation rates rest on
the quality of the relationship between the dimensionless dissipation rate and the
stability parameter (z/ L). And as we mentioned above, there exists a fundamental
disagreement in the slope of this scaling for scalar dissipation rates. Therefore, we
focus directly on our primary interest of the nondimensionalized dissipation rate
and its scaling with z/ L. The problem is addressed here through the acquisition
of experimental data covering a wide range of neutral and unstable atmospheric
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conditions and its analysis in the context of the three sublayer model. Note that
in this paper, temperature § may be considered a proxy for other scalars (e.g. for
specific humidity).

2. The Three Sublayer Model

The concept of the three sublayer model is discussed in detail by Kader and Yaglom
(1990). For a short review see Albertson et al. (1995b). In brief, it subdivides
the ASL into three regions (defined by ranges of z/L) which are separated by
narrow transition bands. At the bottom is the Dynamic Sublayer (DSL, where
—z/L < 0.04), just above which is the Dynamic-Convective Sublayer (DCSL,
where 0.12 < —z/L < 1.2), and at the top is the Free-Convective Sublayer
(FCSL, where —z/ L > 2). The DSL is dominated by mechanical shearing action
such that buoyancy effects can be neglected, all velocity components are scaled
with u., and temperature is scaled with Q.. All one-point fluctuating moments are
believed to be independent of z in the DSL, so the transport term in (6) vanishes
(Kader and Yaglom, 1990). This implies that production equals dissipation

®., = Const. ~ &y = 1. (11)

In the DCSL, the vertical velocity fluctuations scale with the convective velocity
ws (= [(wh)gz/O]'/3), and temperature is scaled with O,.(= (w8)/w,). For
completeness we note that the horizontal velocity components scale with a longitu-
dinal scaling velocity; but this is a moot point for the temperature variance budget
equation as it includes strictly convective terms. Using these scaling parameters
and conventional dimensional analysis on the budget equation gives

1 —z\"V/3
5., = (3, . 632> (T) (12)

where the constants B and B; represent the respective contributions of production
and transport. In the FCSL all velocity components scale with the convective
velocity w., and the scaling temperature is O... The dimensional analysis of
the temperature variance budget is identical for the FCSL as for the DCSL, i.e.
(Equation 12).

Recent experimental work (e.g. Kader and Yaglom, 1990) supports the dimen-
sional analysis showing that both production ¢y and dissipation ©., scale with

(—z/L)~'/3 in these upper two sublayers.

3. Determination of ¢

The average rate of dissipation €5 of the variance of a turbulent temperature fluc-
tuation may be computed using direct or indirect methods, in an analogous way to
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that of velocity fluctuations (Tennekes and Lumley, 1972). However, direct meth-
ods require the measurement of the variance of the spatial or temporal derivatives
of # with a resolution approaching the Kolmogorov microscale (= 1 mm in the
atmosphere). In this study a 3-D sonic anemometer with a transponder spacing
of 150 mm is used to support analysis using indirect methods based on inertial
subrange scaling of: (i) spectral densities, (ii) second-order structure functions, and
(iii) third-order structure functions. Taylor’s (1938) hypothesis of frozen turbulence
is used to convert time series at a point to “spatial series” along the line of flow, as
needed for the inertial subrange scaling.

1) Spectral Density: In the Kolmogorov inertial subrange, the spectral density of
the temperature signal is described as (Corrsin, 1951)

E@(k) = ﬁ9€9€_1/3k_5/3 (13)

where Fy is the expected power of the turbulent temperature fluctuations at
wavenumber £ (rad m~!), and B, is the Obukhov—Corrsin constant, which is
taken as 0.8 in this study, following Wyngaard and Cote (1971), Bradley et al.
(1981), and Kaimal and Finnigan (1994). To solve for €, using (13), we use the
average rate of dissipation (¢) of TKE obtained from a regression of the spectral
density of the longitudinal velocity fluctuations

Eu(k) = 0,333 (14)

where o, is the Kolmogorov constant, taken as 0.55 (e.g. Antonia ef al., 1979;
Kaimal and Finnigan, 1994).

2) Second-Order Structure Function: The second-order structure function repre-
sents the expected value of the temperature difference between two points sepa-
rated by a distance r along the flow direction as a function of that distance r, viz.
(Dgo(r) = ((A8(7))?)) where we write Af(r) for (z + r) — §(z) (Monin and
Yaglom, 1975). The second-order structure function for temperature is related to
the dissipation rate in the inertial subrange as (Obukhov, 1949)

Dea(T) = 099696_1/37‘zi3 (15)

where under a constant skewness assumption the constant Cyg = 4.08y. For the
structure function approach we obtain € from a regression of the second-order
structure function for longitudinal velocity fluctuations, which scales according to
Kolmogorov’s (1941) second hypothesis as

Dy (r) = Cluu€? 3723 (16)

where the constant skewness assumption gives C,,, = 4.0c,,.
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3) Third-Order Structure Function: The mixed third-order structure function rep-
resents the expected value of the product of the longitudinal velocity difference
and the squared temperature difference as a function of r, where 7 is the distance
along the flow direction over which the differences are taken, viz

Dugs(r) = {(u(z + ) — u(z))(0(z + ) - 6(2))?). (17)

The mixed third order structure function (Yaglom, 1949; Monin and Yaglom, 1975,
p- 495) scales in the inertial subrange as

4
Dyeg(r) = ——5697‘. (18)

This latter method is particularly attractive since there are no free constants, and
(18) does not depend on a priori knowledge of the dissipation rate of the turbulent
kinetic energy, as required by the spectral and second-order structure function
methods.

4. Experiment

Two experiments were performed to investigate the effect of atmospheric stabil-
ity on the normalized dissipation rate of temperature variance. Each experiment
involved measurements of the surface energy balance and atmospheric turbulence.
The first experiment was at the Campbell Tract research facility at the University of
California at Davis, and the second was at the dry Owens Lake, at the southern end
of the Owens Valley in southeastern California. In each case a one-dimensional
sonic anemometer with a fine wire (diameter 0.0127 mm) thermocouple and a
Krypton hygrometer were used (at 10 Hz with covariances taken over 20 minute
periods) to measure the vertical fluxes of sensible and latent heat. A 3-D sonic
anemometer (Gill Instruments 1012R2) was used to log the three velocity com-
ponents and the speed of sound. The 3-D sonic was operated at 21 Hz during the
Davis experiment and 56 Hz at Owens Lake.

The Davis site consists of a uniform bare soil field, extending 500 m by 500
m. In the northeast comer of the field there is an irrigated portion extending 155
m in the north—-south direction and 115 m in the east-west direction. The surface
roughness length has been estimated at 2y = 2 mm. The prevailing winds are from
the southwest. The fetch exceeds 100 m for uniform surface wetness, and 400 m
for uniform surface roughness. The 3-D sonic was positioned at z = 0.85 m on
June 22, 23, 24 and 25, 1994 and at z = 1.5 m on July 15, 1994. Irrigation of the
site was performed over the nights of June 21 and July 14 with periods of drying in
between. By saturating the soil surface we forced most of the available energy to
latent heat rather than sensible heat, thus extending the range of near-neutral flows
in the DSL available for experimental investigation. A wide range of atmospheric
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stability conditions were encountered, with the days following immediately after
irrigation having low —z/L values and —z/L increasing with time following
irrigation, as more energy is partitioned to sensible heat flux and so increasing
buoyant production.

To encounter a broader range of convective conditions, measurements were
made over the extremely arid dry Owens Lake. The Owens Lake site is part of
a large basin situated between the Sierra Nevada to its west and the White and
Inyo Mountains to its east. The surface is a crusted sand with a large fraction of
evaporative salts. The surface area of the lakebed exceeds 200 km?, and the uniform
fetch at the experimental site exceeds 10 km. The surface roughness length (zg) is
approximately 0.13 mm (Katul et al., 1995). Surface energy balance measurements
and 56 Hz atmospheric turbulence measurements were made at z = 2.65 m during
the experimental period from August § to 12, 1994,

Temperature was obtained from speed of sound measurements obtained from the
3-D sonic anemometer. The fluctuations in the speed of sound are due to fluctuations
in the air density, which is attributed to fluctuations in water vapor concentration
and air temperature. The speed of sound (density) fluctuations are measured directly
by the 3-D sonic, thus providing fast response temperature fluctuation data from
(Feynman et al., 1963, p. 47-7; Kaimal and Finnigan 1994, p. 216)

¢? = 403(0 + 6) (1 + 0.3215)) (19)

where c¢ is the speed of sound, (© + ) is the instantaneous absolute temperture,
e is the water vapor pressure and p is the atmospheric pressure. The effect of
water vapor fluctuations on (19) were neglected for the arid Owens Lake site. The
temperature derived from (19) has been compared favorable to that from a fine
wire thermocouple and has been applied successfully in other studies (Katul et al.,
1995; Albertson et al., 1995a).

5. Results

Of the data collected, 180 files (20 minutes each) were selected for analysis on the
basis of having turbulence intensity (71 = o, /{U)) values less than 50% (for the
reliable application of Taylor’s (1938) hypothesis, values of 71 < 30% are usual
~ see Lumley and Panofsky (1964) — but we have included files with higher values
since our analysis shows normalized dissipation values to be insensitive to 71 for
T'I values less than 50%). The Davis experiment provided 105 of these files, and the
remaining 75 are from the Owens Lake site. Figure 1a, 1b and 1c are typical plots
of the spectra, second-order structure functions and mixed third-order structure
functions, respectively. They follow generally their requisite scaling slopes of
—~5/3, 2/3, and 1. Of the three methods used, the third-order structure function is
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Figure la. Power spectra of temperature fluctuations (8) for three sample sata files (k is wavenum-
ber [rad/m]). I represents DSL, I DCSL, and IIl FCSL. The spectra have been shifted apart for
presentation, so the absolute magnitudes of £» should be disregarded.
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Figure 1b. Second order structure functions for the same three sample files shown in Figure 1a (r is
lag [m]). The plots have been shifted for presentation.
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Figure Ic. Third order structure functions for the same three sample files shown in Figure 1a (v is
lag [m]). The plots have been shifted for presentation.

considered to be a more stringent test of inertial subrange scaling. It was, therefore,
used in this study to delineate the inertial subrange.

Figures 2a, 2b and 2c show the normalized dissipation rates ®., as computed
from regressions of (13)—(18) for the spectra, second-order structure functions, and
third-order structure functions, respectively. Regressions were performed within
the inertial subrange, as identified by the behaviour of the third-order structure
function and constrained to represent lags not smaller than the transponder spacing
and not larger than one-half the height of the instrument. The solid line represents
production @y as computed by (7) with ey = 1 and 8y = 16. The normalized
dissipation rates fall below this line in the DCSL and FCSL regions. In the DSL,
the production line tends towards the horizontal to a value of slightly less than 1.
The @, data are close to unity in this region also, with the exception of one noted
outlier — which happens to represent the most neutral run in the experiment.

Figure 3 represents the data as averaged in bins of equal log(—z/L) spacing.
The spectral method yields higher values of ®,, than the values of ®., from the
second-order structure function, which, in turn, are slightly higher than ®., values
from the mixed third-order structure function. The values of ®., computed from
the spectral and second-order structure function methods must be considered in the
context of the uncertainty associated with the values of the constants (i.e. o, 3,
C'uu, Cag) used in the inertial subrange regression. Typical values of o, range from
0.5 to 0.62 and 5, from 0.7 to 1.0 (e.g. Antonia et al., 1979). To show the effect of
these constants on the ®,, values, we present limits (or bounds) in Figure 3, with
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Figure 2a. Power spectra based estimates of the normalized dissipation rates versus atmospheric
stability for the 180 files. The Campbell Tract points are marked by circles, and the Owens Lake
points with diamonds. The estimated normalized rate of production ®y of temperature variance
(based on Businger-Dyer formula with oy = 1 and Sy = 16) is shown with a solid line.
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Figure2b. Second-order structure function based estimates of the normalized dissipation rates versus
atmospheric stability for the 180 files. Production line and symbols are as in Figure 2a.
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Figure 2c. Third-order structure function based estimates of the normalized dissipation rates versus
atmospheric stability for the 180 files. Production line and symbols are as in figure 2a.

the upper limit based on using a,, = 0.5 and 3y = 0.7 for the spectral based values
and the lower limit based on using C,, = 2.5 (i.e. a, = 0.62) and Cyg = 4.0
(i.e. 8¢ = 1.0) for the second-order structure function based values. The third-
order structure function approach does not contain a free constant, and the results
based on this method fall within the presented bounds. Considering the uncertainty
introduced to the second-order methods by the inertial range scaling constants, we
place more confidence in the results from the mixed third-order structure function,
and, therefore, base our conclusions on these.

In Figure 4, we analyze further the results of the third-order structure function
method. The three sublayer model was least-squares fitted to the unbinned data of
Figure 2c. In the DSL, the fit was to (11). To investigate the appropriateness of
separate scaling equations in the two convective sublayers, we regressed separate
fits to (12) in each the DCSL and the FCSL, as was done by Kader and Yaglom
(1990). However, the regressions yielded the same values for the constants in the
DCSL and the FCSL. The resulting scaling is

-z
®,, = 0.88 (-L— < 0.04)

—z\"1/3 ~z
=0. — . —
3, 011<L) (o 2<L>

(20)
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Figure 3. Data from Figures 2a, 2b, and 2c, placed in logarithmicaly spaced bins. Average of data
in each bin showed with circles for the spectral estimates, diamonds for the second-order structure
functions estimates, and squares for the third-order structure function estimates. Bounds are shown
to represent the effect of using a range of inertial range constants. The normalized procduction line
is shown as on Figures 2.

which is shown on Figure 4. If we adjust the results (10) of Kader and Yaglom
(1990) to refiect a change of 34 from the 0.7 value used in their analysis to the
0.8 value selected in the present paper, we find their three constants to be 0.70,
0.21, and 0.16 in the DSL, DCSL, and FCSL, respectively. We note from Figure 4
that it may be desirable in practice to represent the full unstable and near-neutral
range by a single convectively scaled model for normalized dissipation. To explore
this, (12) was least squares fitted to the full range of data (0.006 < —z/L < 8)
in Figure 2c, yielding a single convective power law relationship for all negative
values of z/L

AN —1/3
®,, = 0.12 <—-2->

T 21)

(note: the most neutral point was omitted from the regression as an outlier).

This simple scaling form (21) submits to closed form solution for sensibie heat
fluxes with measurements of €g. By substituting (2), the definition of ®., from (4),
and (5) into (21) we write the sensible heat flux H(= pc,(wf)) as

1/5
H = (0.12)"5pc, (%) (k2)¥361 22)
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Figure 4. Data from Figure 2c placed in logarithmically spaced bins. The average of the ®es data in
each bin is represented with an open circle, and the standard deviations are marked with vertical bars.
The Businger-Dyer production model is shown as a dashed line and the derived dissipation scaling
(20) is plotted with the solid line. The near-neutral outlier of figure 2¢ has been omitted.

where €g may be taken from inertial subrange scaling of measurements of v and 6.
To examine the performance of (22), it was used to estimate H with the measure-
ments of €5 from the third-order structure function regressions. These estimates of
H are compared to the eddy correlation based measurements of  in Figure 5. Note
that the comparison is for the same files used to calculate the coefficient in (21).
Future studies are planned to evaluate the performance of (22) with independent
data. The evaluation here is simply for demonstration purposes.

6. Discussion

Dimensional analysis when applied to the three sublayer model of the ASL suggests
a constant value for the normalized dissipation rate of temperature variance (®.,)
in the dynamic sublayer, and a simple scaling with (—z/L)~!/3 in the increasingly
unstable dynamic-convective and free-convective sublayers. This result has been
compared to experimentally derived values of ®.,, where the UC Davis Campbell
Tract experiment provided near-neutral flows under irrigated conditions and the dry
Owens lakebed experiment provided highly unstable atmospheric stratification.
All three of the methods used to measure indirectly the average dissipation rate
confirm the predicted scaling, with a potential discrepancy in the DSL, which may
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Figure 5. Comparison of sensible heat flux estimates from the revised inertial-dissipation mod-
el (Hass) with direct measurements from eddy correlation (Heo). A 1:1 lie is shown for aid in
comparison, Hgss regressed against H.. yields R = 0.91 and a slope of 0.97.

be attributed to either spurious over-prediction of @, at very low —z/L or true
convective scaling (i.e. —1/3 power) of @, for flows in the DSL. Most likely the
high values in the DSL are due to hyper-sensitivity of the normalizing process as
0. in the denominator heads toward O in the neutral limit. However, it may be
desirable in practice to represent the full unstable and near-neutral range by a single
convectively scaled model for normalized dissipation.

The dissipation rates are found to match production rates in the DSL and to
be systematically lower than production in the DCSL and FCSL, with an equal-
ity approached under the most convective conditions. Our results do not directly
support Monji’s (1973) claim that the transport term changes sign at —z/L = 1.
However, we do see the gap between production and dissipation narrowing as
—z/ L increases. Monji suggested that as z becomes > |L|, the transport becomes
a local source. This does make qualitative sense, as a mechanism other than pro-
duction is required to maintain temperature fluctuations in the higher regions where
production is vanishing. We may conclude that dissipation is lower than production
in the lower ASL as the produced variance is being transferred up to higher levels
within say the mixed layer, where production of temperature variance is effectively
absent and dissipation is still present.

The third order mixed structure function has been found to be a simple method
of operationally obtaining €g, without requiring the intermediate calculation of € as
required by the two second-order approaches. Another attribute of the third-order
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approach is the fixed nature of its inertial subrange constant. The ®., results from
this method have been shown to fall within the potential limits of estimates from
second-order approaches, when the Kolmogorov constants are allowed to vary over
a narrow, acceptable range.

The model fitting to the third-order derived ®., values in the three sublayers
(20) resulted in identical coefficients for the DCSL and FCSL. This suggests that
the division of the convective region into two separate sublayers (DCSL and FCSL)
may be meritless when addressing variable groups such as ®.,, in which all terms
scale convectively throughout the region covered by the two sublayers.

The convective scaling form was shown to provide a simple and direct means
of estimating surface heat flux from third-order structure function analysis of u
and # measurements. Similar results could be expected for other scalars such as
humidity. This revised inertial-dissipation method of computing heat fluxes avoids
many of the problems of the previous approach, such as: the effects of uncertain
inertial subrange constants; the need to explicitly calculate € before €4; the effect
of extensive data manipulation (e.g. windowing, tapering, averaging) in the power
spectral scaling; and, the iterative solution scheme.
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