On Linear-Programming Decoding of Nonbinary Expander Codes

Vitaly Skachek
Claude Shannon Institute
University College Dublin

Supported by SFI Grant 06/MI/006

University College Cork
May 18, 2009
Literature Survey

- [Gallager ’62]
 Low-Density Parity-Check (LDPC) codes.
Literature Survey

- [Gallager ’62]
 Low-Density Parity-Check (LDPC) codes.

→ Very efficient in practice.
[Gallager ’62]
Low-Density Parity-Check (LDPC) codes.

→ Very efficient in practice.
→ Difficult to analyze.
Literature Survey

- [Gallager ’62]
 Low-Density Parity-Check (LDPC) codes.
 - Very efficient in practice.
 - Difficult to analyze.

- [Wiberg ’96] [Koetter Vontobel ’03–’05]
 Graph covers, pseudocodewords and pseudoweights.
Literature Survey

- [Gallager ’62] Low-Density Parity-Check (LDPC) codes.
 → Very efficient in practice.
 → Difficult to analyze.

- [Wiberg ’96] [Koetter Vontobel ’03–’05] Graph covers, pseudocodewords and pseudoweights.
- [Feldman Wainwright Karger ’03–’05] Decoding of binary LDPC codes using linear-programming.
Literature Survey

- [Gallager ’62] Low-Density Parity-Check (LDPC) codes.
 → Very efficient in practice.
 → Difficult to analyze.

- [Wiberg ’96] [Koetter Vontobel ’03–’05] Graph covers, pseudocodewords and pseudoweights.

- [Feldman Wainwright Karger ’03–’05] Decoding of binary LDPC codes using linear-programming.

- [Feldman et al. ’04] [Feldman Stein ’04] LP decoding on expander codes corrects a fraction of errors, achieves capacity.
This Work

- LP decoding of nonbinary expander codes.
This Work

- LP decoding of nonbinary expander codes.
- The decoder corrects a number of errors which is approximately a quarter of a lower bound on the minimum distance.
This Work

- LP decoding of nonbinary expander codes.
- The decoder corrects a number of errors which is approximately a quarter of a lower bound on the minimum distance.
- We consider:
 - Bipartite expander graph.
 - Two different types of constituent codes.
This Work

- LP decoding of nonbinary expander codes.
- The decoder corrects a number of errors which is approximately a quarter of a lower bound on the minimum distance.
- We consider:
 - Bipartite expander graph.
 - Two different types of constituent codes.
- The proof does not use a separate assumption on the symmetry of the LP polytope.
[Sipser Spielman ’95] [Barg Zémor ’01–’02]
Graph $\mathcal{G} = (V, E)$ is a Δ-regular bipartite undirected graph.
Graph $\mathcal{G} = (V, E)$ is a Δ-regular bipartite undirected graph.

- Vertex set $V = A \cup B$ such that $A \cap B = \emptyset$ and $|A| = |B| = n$.
- Edge set E of size $n\Delta$ such that every edge in E has one endpoint in A and one endpoint in B.
Graph $\mathcal{G} = (V, E)$ is a Δ-regular bipartite undirected graph.

- Vertex set $V = A \cup B$ such that $A \cap B = \emptyset$ and $|A| = |B| = n$.
- Edge set E of size $n\Delta$ such that every edge in E has one endpoint in A and one endpoint in B.
- Linear $[\Delta, r_A \Delta, \delta_A \Delta]$ and $[\Delta, r_B \Delta, \delta_B \Delta]$ codes C_A and C_B, respectively, over $\mathbb{F} = \mathbb{F}_q$.

\[\text{Vitaly Skachek} \quad \text{LP Decoding of Nonbinary Expander Codes}\]
Graph $\mathcal{G} = (V, E)$ is a Δ-regular bipartite undirected graph.

- Vertex set $V = A \cup B$ such that $A \cap B = \emptyset$ and $|A| = |B| = n$.
- Edge set E of size $n\Delta$ such that every edge in E has one endpoint in A and one endpoint in B.
- Linear $[\Delta, r_A \Delta, \delta_A \Delta]$ and $[\Delta, r_B \Delta, \delta_B \Delta]$ codes C_A and C_B, respectively, over $\mathbb{F} = \mathbb{F}_q$.

C is a linear code of length $|E|$ over \mathbb{F}:

$$C = \left\{ c \in \mathbb{F}^{|E|} : \ (c)_{E(v)} \in C_A \text{ for every } v \in A \text{ and } (c)_{E(v)} \in C_B \text{ for every } v \in B \right\},$$
Code Construction

[Sipser Spielman ’95] [Barg Zémor ’01–’02]

- Graph $\mathcal{G} = (V, E)$ is a Δ-regular bipartite undirected graph.
 - Vertex set $V = A \cup B$ such that $A \cap B = \emptyset$ and $|A| = |B| = n$.
 - Edge set E of size $n\Delta$ such that every edge in E has one endpoint in A and one endpoint in B.
 - Linear $[\Delta, r_A \Delta, \delta_A \Delta]$ and $[\Delta, r_B \Delta, \delta_B \Delta]$ codes C_A and C_B, respectively, over $\mathbb{F} = \mathbb{F}_q$.

- C is a linear code of length $|E|$ over \mathbb{F}:

$$C = \left\{ c \in \mathbb{F}^{|E|} : (c)_{E(v)} \in C_A \text{ for every } v \in A \text{ and } (c)_{E(v)} \in C_B \text{ for every } v \in B \right\},$$

where $(c)_{E(v)}$ = the sub-word of c that is indexed by the set of edges incident with v.
Take $k = 2$, $\Delta = 3$, $n = 4$. Let G_A and G_B be generating matrices of \mathcal{C}_A and \mathcal{C}_B (respectively) over $\mathbb{F}_{2^2} = \{0, 1, \alpha, \alpha^2\}$:

$$
G_A = \begin{pmatrix}
1 & 1 & 1 \\
1 & \alpha & 0 \\
1 & \alpha & 0
\end{pmatrix},
$$

$$
G_B = \begin{pmatrix}
1 & 0 & 1 \\
0 & 1 & \alpha \\
0 & 1 & \alpha
\end{pmatrix}.
$$
Example

Take $k = 2$, $\Delta = 3$, $n = 4$. Let G_A and G_B be generating matrices of C_A and C_B (respectively) over $\mathbb{F}_{2^2} = \{0, 1, \alpha, \alpha^2\}$:

$$G_A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \alpha & 0 \end{pmatrix},$$

$$G_B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & \alpha \end{pmatrix}.$$
Assume that all vertices in \mathcal{G} have degree Δ. The largest eigenvalue of the adjacency matrix $A_\mathcal{G}$ of \mathcal{G} is Δ.
Assume that all vertices in G have degree Δ. The largest eigenvalue of the adjacency matrix A_G of G is Δ.

Let λ_G be the second largest eigenvalue of A_G.
Assume that all vertices in G have degree Δ. The largest eigenvalue of the adjacency matrix A_G of G is Δ.

Let λ_G be the second largest eigenvalue of A_G.

Lower ratios of $\gamma_G = \frac{\lambda_G}{\Delta}$ imply greater values ζ of expansion. [Alon ’86]
Assume that all vertices in G have degree Δ. The largest eigenvalue of the adjacency matrix A_G of G is Δ.

Let λ_G be the second largest eigenvalue of A_G.

Lower ratios of $\gamma_G = \frac{\lambda_G}{\Delta}$ imply greater values ζ of expansion. [Alon ’86]

Expander graph with

$$\lambda_G \leq 2\sqrt{\Delta} - 1$$

is called a *Ramanujan graph*. Constructions are due to [Lubotsky Philips Sarnak ’88], [Margulis ’88].
Parameters of Expander Codes

Code Rate

\[R_C \geq r_A + r_B - 1. \]
Parameters of Expander Codes

Code Rate

\[R_C \geq r_A + r_B - 1. \]

Relative Minimum Distance

\[\delta_C \geq \frac{\delta_A \delta_B - \gamma g \sqrt{\delta_A \delta_B}}{1 - \gamma g}. \]
General Notation

Let the codeword $c = \{c_e\}_{e \in E} \in \mathcal{C}$ be transmitted and the word $y = \{y_e\}_{e \in E} \in \mathbb{F}^{\lvert E \rvert}$ be received.
Let the codeword $c = (c_e)_{e \in E} \in \mathbb{C}$ be transmitted and the word $y = (y_e)_{e \in E} \in \mathbb{F}^{|E|}$ be received.

Define the mapping

$$\xi : \mathbb{F} \rightarrow \{0, 1\}^q \subset \mathbb{R}^q,$$

by

$$\xi(\alpha) = x = (x(\omega))_{\omega \in \mathbb{F}},$$

such that, for each $\omega \in \mathbb{F},$

$$x(\omega) = \begin{cases}
1 & \text{if } \omega = \alpha \\
0 & \text{otherwise.}
\end{cases}$$
Let the codeword \(\mathbf{c} = (c_e)_{e \in E} \in \mathcal{C} \) be transmitted and the word \(\mathbf{y} = (y_e)_{e \in E} \in \mathbb{F}^{|E|} \) be received.

Define the mapping

\[
\xi : \mathbb{F} \longrightarrow \{0, 1\}^q \subset \mathbb{R}^q ,
\]

by

\[
\xi(\alpha) = \mathbf{x} = (x(\omega))_{\omega \in \mathbb{F}} ,
\]

such that, for each \(\omega \in \mathbb{F} \),

\[
x(\omega) = \begin{cases}
1 & \text{if } \omega = \alpha \\
0 & \text{otherwise.}
\end{cases}
\]

Let \(\Xi(\mathbf{c}) = (\xi(c_{e_1}) \mid \xi(c_{e_2}) \mid \cdots \mid \xi(c_{|E|})) \).
For vectors $f \in \mathbb{R}^{q|E|}$, we adopt the notation

$$f = (f_{e_1} \mid f_{e_2} \mid \cdots \mid f_{e_{|E|}}),$$

where

$$\forall e \in E, \ f_e = (f^{(\alpha)}_e)_{\alpha \in \mathbb{F}}.$$
For vectors $f \in \mathbb{R}^{q|E|}$, we adopt the notation

$$f = (f_{e_1} | f_{e_2} | \cdots | f_{e_{|E|}}),$$

where

$$\forall e \in E, f_e = (f_e^{(\alpha)})_{\alpha \in \mathbb{F}}.$$

For all $e \in E, \alpha \in \mathbb{F}$, we use the variables $f_e^{(\alpha)} \geq 0$.
Objective Function

- For vectors $f \in \mathbb{R}^{|E|}$, we adopt the notation

 $$
 f = (f_{e_1} \mid f_{e_2} \mid \cdots \mid f_{e_{|E|}}),
 $$

 where

 $$
 \forall e \in E, \ f_e = (f_e^{(\alpha)})_{\alpha \in \mathbb{F}}.
 $$

- For all $e \in E$, $\alpha \in \mathbb{F}$, we use the variables $f_e^{(\alpha)} \geq 0$.
- Variables w_v, b for all $v \in V$ and all $b \in C(v)$: relative weights of local codewords b associated with $E(v)$.

Vitaly Skachek
LP Decoding of Nonbinary Expander Codes
For vectors $\mathbf{f} \in \mathbb{R}^{q|E|}$, we adopt the notation

$$\mathbf{f} = (f_{e_1} | f_{e_2} | \cdots | f_{e_{|E|}}),$$

where

$$\forall e \in E, \ f_e = (f_{e}^{(\alpha)})_{\alpha \in \mathbb{F}}.$$

For all $e \in E, \alpha \in \mathbb{F}$, we use the variables $f_{e}^{(\alpha)} \geq 0$.

Variables w_v, b for all $v \in V$ and all $b \in \mathcal{C}(v)$: relative weights of local codewords b associated with $E(v)$.

The objective function is $\sum_{e \in E} \sum_{\alpha \in \mathbb{F}} \gamma_{e}^{(\alpha)} f_{e}^{(\alpha)}$, where $\gamma_{e}^{(\alpha)}$ is a function of the channel output.
Objective Function (cont.)

- For each $\alpha \in \mathbb{F}$ we set

$$
\gamma_e(\alpha) = \begin{cases}
-1 & \text{if } \alpha = y_e \\
1 & \text{if } \alpha \neq y_e
\end{cases}.
$$
For each $\alpha \in \mathbb{F}$ we set

$$\gamma_e(\alpha) = \begin{cases}
-1 & \text{if } \alpha = y_e \\
1 & \text{if } \alpha \neq y_e
\end{cases}.$$

Let $f_e = \xi(\beta)$ for some $e \in E, \beta \in \mathbb{F}$. Then,

$$\sum_{\alpha \in \mathbb{F}} \gamma_e(\alpha) f_e(\alpha) = \begin{cases}
-1 & \text{if } \beta = y_e \\
1 & \text{if } \beta \neq y_e
\end{cases}.$$
For each $\alpha \in \mathbb{F}$ we set

$$
\gamma_e^{(\alpha)} = \begin{cases}
-1 & \text{if } \alpha = y_e \\
1 & \text{if } \alpha \neq y_e
\end{cases}.
$$

Let $f_e = \xi(\beta)$ for some $e \in E$, $\beta \in \mathbb{F}$. Then,

$$
\sum_{\alpha \in \mathbb{F}} \gamma_e^{(\alpha)} f_e^{(\alpha)} = \begin{cases}
-1 & \text{if } \beta = y_e \\
1 & \text{if } \beta \neq y_e
\end{cases}.
$$

Suppose now that $f = \Xi(z)$ for some $z \in \mathbb{F}^{\mid E\mid}$. It follows that

$$
\sum_{e \in E} \sum_{\alpha \in \mathbb{F}} \gamma_e^{(\alpha)} f_e^{(\alpha)} + \mid E \mid = 2d(y, z),
$$

where $d(y, z)$ is the Hamming distance between y and z.
Maximize

\[\sum_{e \in E, \alpha \in F} \left(-\gamma_e^{(\alpha)} \right) \cdot f_e^{(\alpha)} \]
Primal Problem

Maximize

\[\sum_{e \in E, \alpha \in F} \left(-\gamma_e^{(\alpha)} \right) \cdot f_e^{(\alpha)} \]

subject to

\[\forall v \in V : \sum_{b \in C(v)} w_{v,b} = 1 ; \]
Primal Problem

Maximize \[\sum_{e \in E, \alpha \in \mathbb{F}} \left(-\gamma_{e}^{(\alpha)} \right) \cdot f_{e}^{(\alpha)} \]

subject to

\[\forall v \in V : \sum_{b \in C(v)} w_{v, b} = 1 ; \]

\[\forall e = \{v, u\} \in E, \forall \alpha \in \mathbb{F} : f_{e}^{(\alpha)} = \sum_{b \in C(v)} : b_{e} = \alpha w_{v, b} ; \]

\[f_{e}^{(\alpha)} = \sum_{b \in C(u)} : b_{e} = \alpha w_{u, b} ; \]
Primal Problem

Maximize

\[\sum_{e \in E, \alpha \in F} \left(-\gamma_e^{(\alpha)} \right) \cdot f_e^{(\alpha)} \]

subject to

\[\forall v \in V : \quad \sum_{b \in C(v)} w_{v,b} = 1 ; \]

\[\forall e = \{v, u\} \in E, \forall \alpha \in F : \quad f_e^{(\alpha)} = \sum_{b \in C(v)} : b_e = \alpha \cdot w_{v,b} , \]

\[f_e^{(\alpha)} = \sum_{b \in C(u)} : b_e = \alpha \cdot w_{u,b} ; \]

\[\forall e \in E, \alpha \in F : \quad f_e^{(\alpha)} \geq 0 ; \]

\[\forall v \in V, b \in C(v) : \quad w_{v,b} \geq 0 . \]
Dual Witness Approach [Feldman et al. ’04]
Dual Witness Approach [Feldman et al. ’04]

- The codeword $c \in C$ was transmitted.
Dual Witness Approach [Feldman et al. ’04]

- The codeword $c \in C$ was transmitted.
- There is a feasible combination of values of the variables $w_{v,b}$ that corresponds to c.

Dual Witness

Dual Witness Approach [Feldman et al. ’04]

- The codeword \(c \in C \) was transmitted.
- There is a feasible combination of values of the variables \(w_v, b \) that corresponds to \(c \).

Decoding Success

The sufficient criteria for the decoding success is that this solution is the *unique* optimum of the primal LP decoding problem.
Decoding Success

Dual Polytope

Primal Polytope
Decoding Success

Dual Polytope

Min

Max

Primal Polytope
Decoding Success

Dual Polytope

Feasible Point

Primal Polytope
For each $\omega \in \mathbb{F}$, $e \in E$, and $v \in V$, such that v is an endpoint of e, there is a variable $\tau_{v,e}^{(\omega)}$.
For each $\omega \in \mathbb{F}$, $e \in E$, and $v \in V$, such that v is an endpoint of e, there is a variable $\tau_{v,e}(\omega)$.

For each $v \in V$, there is a variable σ_v.
Dual Problem

Minimize $\sum_{v \in V} \sigma_v$
Dual Problem

Minimize $\sum_{v \in V} \sigma_v$

subject to $\forall e = \{v, u\} \in E, \forall \omega \in \mathbb{F}$: $\tau_{v,e}^{(\omega)} + \tau_{u,e}^{(\omega)} \leq \gamma_{e}^{(\omega)}$;
Dual Problem

Minimize \(\sum_{v \in V} \sigma_v \)

subject to
\[
\forall e = \{v, u\} \in E, \forall \omega \in \mathbb{F} : \quad \tau^{(\omega)}_{v,e} + \tau^{(\omega)}_{u,e} \leq \gamma^{(\omega)}_e ;
\]

\[
\forall v \in V, \forall b \in \mathcal{C}(v) : \quad \sum_{e \in E(v)} \tau^{(b_e)}_{v,e} + \sigma_v \geq 0 .
\]
Minimize \[\sum_{v \in V} \nu_v \]

subject to \[\forall e = \{v, u\} \in E, \forall \omega \in \mathbb{F} \setminus \{c_e\} : \quad \tau_{v,e}^{(\omega)} + \tau_{u,e}^{(\omega)} < \gamma_e^{(\omega)}; \]
Minimize \(\sum_{v \in V} \sigma_v \)

subject to

\[\forall e = \{v, u\} \in E, \forall \omega \in \mathbb{F}\setminus\{c_e\} : \quad \tau_{v,e}^{(\omega)} + \tau_{u,e}^{(\omega)} < \gamma_{e}^{(\omega)} ; \]

\[\forall e = \{v, u\} \in E : \quad \tau_{v,e}^{(c_e)} + \tau_{u,e}^{(c_e)} \leq \gamma_{e}^{(c_e)} ; \]
Minimize \(\sum_{v \in V} \sigma_v \)

subject to

\[
\forall e = \{v, u\} \in E, \ \forall \omega \in \mathbb{F} \setminus \{c_e\} : \quad \tau_{v,e}^{(\omega)} + \tau_{u,e}^{(\omega)} < \gamma_{e}^{(\omega)} ;
\]

\[
\forall e = \{v, u\} \in E : \quad \tau_{v,e}^{(c_e)} + \tau_{u,e}^{(c_e)} \leq \gamma_{e}^{(c_e)} ;
\]

\[
\forall v \in V, \ \forall b \in \mathcal{C}(v) : \quad \sum_{e \in E(v)} \tau_{v,e}^{(b_e)} + \sigma_v \geq 0 .
\]
We aim at the objective value to be $|E| - 2d(y, c)$. This can be achieved by setting, for all $v \in V$, $\sigma_v = \frac{1}{2} \Delta - d((y)_{E(v)}, (c)_{E(v)})$.
We aim at the objective value to be $|E| - 2d(y, c)$. This can be achieved by setting, for all $v \in V$, $\sigma_v = \frac{1}{2} \Delta - d((y)_{E(v)}, (c)_{E(v)})$.

<table>
<thead>
<tr>
<th>Condition</th>
<th>$\omega = c_e$</th>
<th>$\omega \neq c_e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_e is correct</td>
<td>$\tau_{v,e}^{(\omega)} = -\frac{1}{2}$</td>
<td>$\tau_{v,e}^{(\omega)} = \frac{1}{2} - \epsilon$</td>
</tr>
<tr>
<td>y_e is in error</td>
<td>$\tau_{v,e}^{(\omega)} = \frac{1}{2}$</td>
<td>$\tau_{v,e}^{(\omega)} = -\frac{5}{2} - \epsilon$ or $\tau_{v,e}^{(\omega)} = \frac{3}{2}$ depends on the structure of the error</td>
</tr>
</tbody>
</table>
Uniqueness (again)

Minimize \[\sum_{v \in V} \sigma_v \]

subject to
\[\forall e = \{v, u\} \in E, \forall \omega \in F \setminus \{c_e\} : \quad \tau_{v,e}^{(\omega)} + \tau_{u,e}^{(\omega)} < \gamma_e^{(\omega)} ; \]
\[\forall e = \{v, u\} \in E : \quad \tau_{v,e}^{(c_e)} + \tau_{u,e}^{(c_e)} \leq \gamma_e^{(c_e)} ; \]
Minimize \[\sum_{v \in V} \sigma_v \]

subject to

\[\forall e = \{v, u\} \in E, \ \forall \omega \in F \setminus \{c_e\} : \quad \tau_{v,e}^{(\omega)} + \tau_{u,e}^{(\omega)} < \gamma_e^{(\omega)} ; \]

\[\forall e = \{v, u\} \in E : \quad \tau_{v,e}^{(c_e)} + \tau_{u,e}^{(c_e)} \leq \gamma_e^{(c_e)} ; \]

\[\forall v \in V, \ \forall b \in C(v) : \quad \sum_{e \in E(v)} \tau_{v,e}^{(b_e)} \geq -\sigma_v . \]
Uniqueness (again)

Minimize \[\sum_{v \in V} \sigma_v \]

subject to \[\forall e = \{v, u\} \in E, \forall \omega \in \mathbb{F}\backslash \{c_e\} : \quad \tau_{v,e}^{(\omega)} + \tau_{u,e}^{(\omega)} < \gamma_e^{(\omega)} ; \]

\[\forall e = \{v, u\} \in E : \quad \tau_{v,e}^{(c_e)} + \tau_{u,e}^{(c_e)} \leq \gamma_e^{(c_e)} ; \]

\[\forall v \in V, \forall b \in \mathcal{C}(v) : \quad \sum_{e \in E(v)} \tau_{v,e}^{(b_e)} \geq -\sigma_v . \]

Here for all \(v \in V, \sigma_v = \frac{1}{2} \Delta - d((y)_{E(v)}, (c)_{E(v)}) \).
The assignment of the directions to the edges of the subgraph \(\mathcal{H} = (U_A \cup U_B, \mathcal{E}) \) is called a \((\rho_A, \rho_B)\)-orientation if each vertex \(v \in U_A \) and each vertex \(u \in U_B \) has at most \(\rho_A \Delta \) and \(\rho_B \Delta \) incoming edges in \(\mathcal{E} \), respectively.
Error Orientation

Definition

The assignment of the directions to the edges of the subgraph $\mathcal{H} = (U_A \cup U_B, \mathcal{E})$ is called a (ρ_A, ρ_B)-orientation if each vertex $v \in U_A$ and each vertex $u \in U_B$ has at most $\rho_A \Delta$ and $\rho_B \Delta$ incoming edges in \mathcal{E}, respectively.
Definition

The assignment of the directions to the edges of the subgraph $\mathcal{H} = (U_A \cup U_B, \mathcal{E})$ is called a (ρ_A, ρ_B)-orientation if each vertex $v \in U_A$ and each vertex $u \in U_B$ has at most $\rho_A \Delta$ and $\rho_B \Delta$ incoming edges in \mathcal{E}, respectively.

Error pattern orientation: for $\omega \neq c_e$ and y_e in error, the value $\tau_{v,e}^{(\omega)} = -\frac{5}{2} - \epsilon$ will be assigned if the edge e enters the vertex v.

Vitaly Skachek

LP Decoding of Nonbinary Expander Codes
Existence of \((< \frac{1}{4} \delta_A, < \frac{1}{4} \delta_B)\)-orientation yields a sufficiently small number of assignments \(-\frac{5}{2} - \epsilon\). This, in turn, yields that

\[
\sum_{e \in E(v)} \tau_{v,e}^{(b_e)} \geq -\sigma_v .
\]
Existence of \((<\frac{1}{4}\delta_A, <\frac{1}{4}\delta_B)\)-orientation yields a sufficiently small number of assignments \(-\frac{5}{2} - \epsilon\). This, in turn, yields that

\[
\sum_{e \in E(v)} \tau_{v,e}^{(b_e)} \geq -\sigma_v .
\]

Lemma

Let \(\mathcal{H} = (U_A \cup U_B, \mathcal{E})\) be a subgraph of \(\mathcal{G} = (A \cup B, E)\). Assume that \(|\mathcal{E}| \leq (\alpha \beta - \frac{1}{2} \gamma_{\mathcal{G}})\Delta n\) for some \(\alpha, \beta \in (0, 1]\), such that \(\gamma_{\mathcal{G}} \leq \sqrt{\alpha \beta}\), and \(\frac{1}{2} \alpha \Delta, \frac{1}{2} \beta \Delta\) are both integers. Then, \(\mathcal{E}\) contains a \((\beta/2, \alpha/2)\)-orientation.
Theorem

- Let $\theta_A > 0$ ($\theta_B > 0$) be the largest number such that $\theta_A < \delta_A$ ($\theta_B < \delta_B$) and $\frac{1}{4}\theta_A\Delta$ ($\frac{1}{4}\theta_B\Delta$, respectively) is integer.
Theorem

- Let $\theta_A > 0$ ($\theta_B > 0$) be the largest number such that $\theta_A < \delta_A$ ($\theta_B < \delta_B$) and $\frac{1}{4}\theta_A \Delta$ ($\frac{1}{4}\theta_B \Delta$, respectively) is integer.

- Let C be as above, and assume that $\gamma_G \leq \frac{1}{2}\sqrt{\theta_A \theta_B}$.
Theorem

Let $\theta_A > 0$ ($\theta_B > 0$) be the largest number such that $\theta_A < \delta_A$ ($\theta_B < \delta_B$) and $\frac{1}{4} \theta_A \Delta$ ($\frac{1}{4} \theta_B \Delta$, respectively) is integer.

Let C be as above, and assume that $\gamma_G \leq \frac{1}{2} \sqrt{\theta_A \theta_B}$.

Then, the LP decoder corrects any error pattern of a size less than or equal to $(\frac{1}{4} \theta_A \theta_B - \frac{1}{2} \gamma_G) \Delta n$.
Theorem

- Let $\theta_A > 0$ ($\theta_B > 0$) be the largest number such that $\theta_A < \delta_A$ ($\theta_B < \delta_B$) and $\frac{1}{4} \theta_A \Delta$ ($\frac{1}{4} \theta_B \Delta$, respectively) is integer.
- Let C be as above, and assume that $\gamma_G \leq \frac{1}{2} \sqrt{\theta_A \theta_B}$.

Then, the LP decoder corrects any error pattern of a size less than or equal to $(\frac{1}{4} \theta_A \theta_B - \frac{1}{2} \gamma_G) \Delta n$.

Remark

It is possible to improve (slightly) on the low-order term in the expression for the number of correctable errors in the statement of the main result. In the present work, we omit this analysis.