Weight Distributions of Doubly-Generalized LDPC Codes

Mark F. Flanagan
University College Dublin, Ireland

Enrico Paolini, Marco Chiani
DEIS, University of Bologna, Italy

Marc Fossorier
ETIS ENSEA / UCP / CNRS UMR-8051, France

CSI Workshop on Coding and Cryptography
May 18, 2009
Low-density parity-check codes (LDPC codes) [Gallager ’62]

- Check Nodes
- Variable Nodes

CNs may be viewed as single parity check (SPC) codes
VNs may be viewed as repetition (REP) codes
Background

- Low-density parity-check codes (LDPC codes) [Gallager '62]
- **Tanner graph**: check nodes (CNs) and variable nodes (VNs) connected by edges
Low-density parity-check codes (LDPC codes) [Gallager ’62]

Tanner graph: check nodes (CNs) and variable nodes (VNs) connected by edges

Bits associated with VNs; CNs represent parity checks
Low-density parity-check codes (LDPC codes) [Gallager '62]

Tanner graph: check nodes (CNs) and variable nodes (VNs) connected by edges

Bits associated with VNs; CNs represent parity checks

Check Nodes □ □ □ … □ (SPC codes)

Variable Nodes ◼ ◼ ◼ … ◼ (REP codes)

1 1 0
Low-density parity-check codes (LDPC codes) [Gallager ’62]

Tanner graph: check nodes (CNs) and variable nodes (VNs) connected by edges

Bits associated with VNs; CNs represent parity checks

CNs may be viewed as *single parity check (SPC) codes*

VNs may be viewed as *repetition (REP) codes*

Background
Low-density parity-check codes (LDPC codes) [Gallager '62]

Tanner graph: check nodes (CNs) and variable nodes (VNs) connected by edges

Bits associated with VNs; CNs represent parity checks

- CNs may be viewed as *single parity check (SPC) codes*
- VNs may be viewed as *repetition (REP) codes*
Generalized LDPC codes (GLDPC codes) [Tanner ’81]
Background

- Generalized LDPC codes (GLDPC codes) [Tanner ’81]
- Here a degree-s CN may be any (s, h) linear block code
Generalized LDPC codes (GLDPC codes) [Tanner ’81]
Here a degree-s CN may be any \((s, h)\) linear block code
Sometimes called a *generalized* CN
Generalized LDPC codes (GLDPC codes) [Tanner '81]

Here a degree-s CN may be any (s, h) linear block code

Sometimes called a generalized CN

Represent a promising solution for low-rate channel coding schemes, due to an overall rate loss introduced by the generalized CNs
Doubly-Generalized LDPC codes (D-GLDPC Codes)

[Sipser Spielman ’96] [Dolinar ’03] [Wang Fossorier ’06]
Background

- Doubly-Generalized LDPC codes (D-GLDPC Codes)
 [Sipser Spielman ’96] [Dolinar ’03] [Wang Fossorier ’06]
- Here VNs as well as CNs may be of any generic linear block code types

Mark F. Flanagan | Weight Distributions of D-GLDPC Codes
Doubly-Generalized LDPC codes (D-GLDPC Codes)
[Sipser Spielman ’96] [Dolinar ’03] [Wang Fossorier ’06]

Here VNs as well as CNs may be of any generic linear block code types

A degree-q VN may be any (q, k) linear block code
Doubly-Generalized LDPC codes (D-GLDPC Codes)
[Sipser Spielman ’96] [Dolinar ’03] [Wang Fossorier ’06]

Here VNs as well as CNs may be of any generic linear block code types

A degree-q VN may be any (q, k) linear block code

The k local information bits form part of the D-GLDPC codeword
Background

- Doubly-Generalized LDPC codes (D-GLDPC Codes) [Sipser Spielman ’96] [Dolinar ’03] [Wang Fossorier ’06]
- Here VNs as well as CNs may be of any generic linear block code types
- A degree-q VN may be any (q, k) linear block code
- The k local information bits form part of the D-GLDPC codeword
- The q local encoded bits are associated with the Tanner graph edges
Doubly-Generalized LDPC codes (D-GLDPC Codes)
[Sipser Spielman ’96] [Dolinar ’03] [Wang Fossorier ’06]
Here VNs as well as CNs may be of any generic linear block code types
A degree-q VN may be any (q, k) linear block code
The k local information bits form part of the D-GLDPC codeword
The q local encoded bits are associated with the Tanner graph edges
Further generalization of GLDPC concept
Doubly-Generalized LDPC codes (D-GLDPC Codes) [Sipser Spielman ’96] [Dolinar ’03] [Wang Fossorier ’06]

- Here VNs as well as CNs may be of any generic linear block code types
- A degree-q VN may be any (q, k) linear block code
- The k local information bits form part of the D-GLDPC codeword
- The q local encoded bits are associated with the Tanner graph edges
- Further generalization of GLDPC concept
- Facilitates much greater design flexibility in terms of code rate, e.g. high-rate codes may be constructed
D-GLDPC Example

(7, 4) Hamming codes

Π

(7, 4) Hamming codes

REP code

SPC code

(7, 4) Hamming codes
(Selected) Previous Work on Growth Rate

- [Gallager ’62] - binary regular LDPC codes

Mark F. Flanagan Weight Distributions of D-GLDPC Codes
[Gallager ’62] - binary regular LDPC codes

[Litsyn Shevelev ’03] [Miller Burshtein ’04] [Di et al. ’06] - binary irregular LDPC codes
(Selected) Previous Work on Growth Rate

- [Gallager ’62] - binary regular LDPC codes
- [Litsyn Shevelev ’03] [Miller Burshtein ’04] [Di et al. ’06] - binary irregular LDPC codes
- [Boutros et al. ’99] - binary regular GLDPC codes with BCH CNs and repetition-2 VNs
- [Lentmaier Zigangirov ’99] - binary regular GLDPC codes with Hamming CNs and repetition-2 VNs
- [Tillich ’04] - binary GLDPC codes with a uniform CN set (all CNs of the same type) and an irregular VN set (repetition VNs with different lengths)
- [Paolini et al. ’08] - binary irregular GLDPC codes
- [Barg et al. ’08] - related codes based on hypergraphs
(Selected) Previous Work on Growth Rate

- [Gallager '62] - binary regular LDPC codes
- [Litsyn Shevelev '03] [Miller Burshtein '04] [Di et al. ’06] - binary irregular LDPC codes
- [Boutros et al. ’99] - binary regular GLDPC codes with BCH CNs and repetition-2 VNs
- [Lentmaier Zigangirov ’99] - binary regular GLDPC codes with Hamming CNs and repetition-2 VNs
(Selected) Previous Work on Growth Rate

- [Gallager ’62] - binary regular LDPC codes
- [Litsyn Shevelev ’03] [Miller Burshtein ’04] [Di et al. ’06] - binary irregular LDPC codes
- [Boutros et al. ’99] - binary regular GLDPC codes with BCH CNs and repetition-2 VNs
- [Lentmaier Zigangirov ’99] - binary regular GLDPC codes with Hamming CNs and repetition-2 VNs
- [Tillich ’04] - binary GLDPC codes with a uniform CN set (all CNs of the same type) and an irregular VN set (repetition VNs with different lengths)
(Selected) Previous Work on Growth Rate

- [Gallager ’62] - binary regular LDPC codes
- [Litsyn Shevelev ’03] [Miller Burshtein ’04] [Di et al. ’06] - binary irregular LDPC codes
- [Boutros et al. ’99] - binary regular GLDPC codes with BCH CNs and repetition-2 VNs
- [Lentmaier Zigangirov ’99] - binary regular GLDPC codes with Hamming CNs and repetition-2 VNs
- [Tillich ’04] - binary GLDPC codes with a uniform CN set (all CNs of the same type) and an irregular VN set (repetition VNs with different lengths)
- [Paolini et al. ’08] - binary irregular GLDPC codes
(Selected) Previous Work on Growth Rate

- [Gallager '62] - binary regular LDPC codes
- [Litsyn Shevelev '03] [Miller Burshtein '04] [Di et al. '06] - binary irregular LDPC codes
- [Boutros et al. '99] - binary regular GLDPC codes with BCH CNs and repetition-2 VNs
- [Lentmaier Zigangirov '99] - binary regular GLDPC codes with Hamming CNs and repetition-2 VNs
- [Tillich '04] - binary GLDPC codes with a uniform CN set (all CNs of the same type) and an irregular VN set (repetition VNs with different lengths)
- [Paolini et al. '08] - binary irregular GLDPC codes
- [Barg et al. '08] - related codes based on hypergraphs
We solve for the asymptotic growth rate of the number of linear-weight codewords of irregular D-GLDPC codes.
We solve for the asymptotic growth rate of the number of linear-weight codewords of irregular D-GLDPC codes.

- Generalizes known results for LDPC and GLDPC codes
Scope

We solve for the asymptotic growth rate of the number of linear-weight codewords of irregular D-GLDPC codes.

- Generalizes known results for LDPC and GLDPC codes
- Also generalizes connection with the stability condition over the BEC
We solve for the asymptotic growth rate of the number of linear-weight codewords of irregular D-GLDPC codes.

- Generalizes known results for LDPC and GLDPC codes
- Also generalizes connection with the stability condition over the BEC
- Always obtain good initial behaviour of the growth rate unless there exist VNs and CNs with minimum distance 2
We solve for the asymptotic growth rate of the number of linear-weight codewords of irregular D-GLDPC codes.

- Generalizes known results for LDPC and GLDPC codes
- Also generalizes connection with the stability condition over the BEC
- Always obtain **good initial behaviour** of the growth rate unless there exist VNs and CNs with minimum distance 2
- In the latter case, we identify a **key parameter** which discriminates between an exponentially small and an exponentially large number of small linear-weight codewords
Scope

We solve for the asymptotic growth rate of the number of linear-weight codewords of irregular D-GLDPC codes.

- Generalizes known results for LDPC and GLDPC codes
- Also generalizes connection with the stability condition over the BEC
- Always obtain **good initial behaviour** of the growth rate unless there exist VNs and CNs with minimum distance 2
- In the latter case, we identify a **key parameter** which discriminates between an exponentially small and an exponentially large number of small linear-weight codewords
- For the general case, we present a **polynomial-system** solution for the growth rate.
We define the D-GLDPC code ensemble sequence \(\{ \mathcal{M}_n \} \) as follows:
We define the D-GLDPC code ensemble sequence \(\{M_n\} \) as follows:

- \(n \) denotes the number of VNs
We define the D-GLDPC code ensemble sequence \(\{ M_n \} \) as follows:

- \(n \) denotes the number of VNs
- There are \(n_c \) different CN types \(t \in I_c = \{1, 2, \cdots, n_c\} \)
We define the D-GLDPC code ensemble sequence \(\{ M_n \} \) as follows:

- \(n \) denotes the number of VNs
- There are \(n_c \) different CN types \(t \in I_c = \{ 1, 2, \ldots, n_c \} \)
- There are \(n_v \) different VN types \(t \in I_v = \{ 1, 2, \ldots, n_v \} \)
We define the D-GLDPC code ensemble sequence \(\{ \mathcal{M}_n \} \) as follows:

- \(n \) denotes the number of VNs
- There are \(n_c \) different CN types \(t \in I_c = \{1, 2, \cdots, n_c\} \)
- There are \(n_v \) different VN types \(t \in I_v = \{1, 2, \cdots, n_v\} \)
- For \(t \in I_c \), denote by \(h_t, s_t \) and \(r_t \) the CN dimension, length and minimum distance, respectively
We define the D-GLDPC code ensemble sequence \{\mathcal{M}_n\} as follows:

- \(n \) denotes the number of VNs
- There are \(n_c \) different CN types \(t \in I_c = \{1, 2, \cdots, n_c\} \)
- There are \(n_v \) different VN types \(t \in I_v = \{1, 2, \cdots, n_v\} \)
- For \(t \in I_c \), denote by \(h_t, s_t \) and \(r_t \) the CN dimension, length and minimum distance, respectively
- For \(t \in I_v \), denote by \(k_t, q_t \) and \(p_t \) the VN dimension, length and minimum distance, respectively
We define the polynomials

\[\rho(x) = \sum_{t \in I_c} \rho_t x^{s_t-1} ; \quad \lambda(x) = \sum_{t \in I_v} \lambda_t x^{q_t-1} \]
We define the polynomials

\[\rho(x) = \sum_{t \in I_c} \rho_t x^{s_t - 1} \quad \lambda(x) = \sum_{t \in I_v} \lambda_t x^{q_t - 1} \]

Here \(\rho_t \) (\(\lambda_t \)) denotes the fraction of edges connected to CNs (VNs) of type \(t \).
We define the polynomials

\[
\rho(x) = \sum_{t \in I_c} \rho_t x^{s_t-1} \quad ; \quad \lambda(x) = \sum_{t \in I_v} \lambda_t x^{q_t-1}
\]

Here \(\rho_t (\lambda_t) \) denotes the fraction of edges connected to CNs (VNs) of type \(t \).

There are

\[
E = \frac{n}{\int \lambda} \text{ Tanner graph edges, and } m = E \int \rho \text{ CNs}
\]
We define the polynomials

\[\rho(x) = \sum_{t \in I_c} \rho_t x^{s_t-1} \quad ; \quad \lambda(x) = \sum_{t \in I_v} \lambda_t x^{q_t-1} \]

Here \(\rho_t \) (\(\lambda_t \)) denotes the fraction of edges connected to CNs (VNs) of type \(t \).

There are

\[E = \int \lambda \] Tanner graph edges, and \(m = E \int \rho \) CNs

The D-GLDPC code consists of

\[N = \frac{n}{\int \lambda} \sum_{t \in I_v} \frac{\lambda_t k_t}{q_t} \] bits and \(M = \frac{m}{\int \rho} \sum_{t \in I_c} \frac{\rho_t(s_t - h_t)}{s_t} \) checks
We define the polynomials

\[\rho(x) = \sum_{t \in I_c} \rho_t x^{s_t - 1} ; \quad \lambda(x) = \sum_{t \in I_v} \lambda_t x^{q_t - 1} \]

Here \(\rho_t \) (\(\lambda_t \)) denotes the fraction of edges connected to CNs (VNs) of type \(t \).

There are

\[E = \frac{n}{\int \lambda} \text{ Tanner graph edges, and } m = E \int \rho \text{ CNs} \]

The D-GLDPC code consists of

\[N = \frac{n}{\int \lambda} \sum_{t \in I_v} \frac{\lambda_t k_t}{q_t} \text{ bits and } M = \frac{m}{\int \rho} \sum_{t \in I_c} \frac{\rho_t (s_t - h_t)}{s_t} \text{ checks} \]

A member of the ensemble corresponds to a permutation on the \(E \) edges connecting CNs to VNs.
The weight enumerating polynomial for CN type $t \in I_c$ is given by

$$A^{(t)}(x) = \sum_{u=0}^{s_t} A^{(t)}_u x^u = 1 + \sum_{u=r_t}^{s_t} A^{(t)}_u x^u.$$
Further Definitions

- The weight enumerating polynomial for CN type \(t \in I_c \) is given by

\[
A^{(t)}(x) = \sum_{u=0}^{s_t} A_u^{(t)} x^u = 1 + \sum_{u=r_t}^{s_t} A_u^{(t)} x^u.
\]

- Here \(A_u^{(t)} \geq 0 \) denotes the number of weight-\(u \) codewords for CNs of type \(t \).
Further Definitions

- The weight enumerating polynomial for CN type \(t \in I_c \) is given by

\[
A^{(t)}(x) = \sum_{u=0}^{s_t} A^{(t)}_u x^u = 1 + \sum_{u=r_t}^{s_t} A^{(t)}_u x^u .
\]

- Here \(A^{(t)}_u \geq 0 \) denotes the number of weight-\(u \) codewords for CNs of type \(t \).

- The bivariate weight enumerating polynomial for VN type \(t \in I_v \) is given by

\[
B^{(t)}(x, y) = \sum_{u=0}^{k_t} \sum_{v=0}^{q_t} B^{(t)}_{u,v} x^u y^v = 1 + \sum_{u=1}^{k_t} \sum_{v=p_t}^{q_t} B^{(t)}_{u,v} x^u y^v .
\]
Further Definitions

- The weight enumerating polynomial for CN type $t \in I_c$ is given by

$$A^{(t)}(x) = \sum_{u=0}^{s_t} A^{(t)}_u x^u = 1 + \sum_{u=r_t}^{s_t} A^{(t)}_u x^u.$$

- Here $A^{(t)}_u \geq 0$ denotes the number of weight-u codewords for CNs of type t.

- The bivariate weight enumerating polynomial for VN type $t \in I_v$ is given by

$$B^{(t)}(x, y) = \sum_{u=0}^{k_t} \sum_{v=0}^{q_t} B^{(t)}_{u,v} x^u y^v = 1 + \sum_{u=1}^{k_t} \sum_{v=p_t}^{q_t} B^{(t)}_{u,v} x^u y^v.$$

- Here $B^{(t)}_{u,v} \geq 0$ denotes the number of weight-v codewords generated by input words of weight u, for VNs of type t.

Mark F. Flanagan | Weight Distributions of D-GLDPC Codes
Further Definitions (CN side)

- We denote the smallest minimum distance over all CN types by

\[r = \min\{r_t : t \in I_c\} \]
We denote the smallest minimum distance over all CN types by
\[r = \min\{r_t : t \in I_c\} \]
and the set of CN types with this minimum distance by
\[X_c = \{ t \in I_c : r_t = r \} . \]
We denote the smallest minimum distance over all CN types by

\[r = \min\{r_t : t \in I_c\} \]

and the set of CN types with this minimum distance by

\[X_c = \{t \in I_c : r_t = r\} . \]

We also define for each \(t \in I_c \)

\[C_t = \frac{rA_r^{(t)}}{s_t} > 0 \]
We denote the smallest minimum distance over all CN types by

\[r = \min \{ r_t : t \in I_c \} \]

and the set of CN types with this minimum distance by

\[X_c = \{ t \in I_c : r_t = r \} . \]

We also define for each \(t \in I_c \)

\[C_t = \frac{r A_r(t)}{s_t} > 0 \]

and

\[C = \sum_{t \in X_c} \rho_t C_t > 0 . \]
Similarly, we denote the smallest minimum distance over all VN types by

\[p = \min\{p_t : t \in I_v\} \]
Similarly, we denote the smallest minimum distance over all VN types by

\[p = \min\{p_t : t \in I_v\} \]

and the set of VN types with this minimum distance by

\[X_v = \{ t \in I_v : p_t = p \} . \]
Similarly, we denote the smallest minimum distance over all VN types by

\[p = \min \{ p_t : t \in I_v \} \]

and the set of VN types with this minimum distance by

\[X_v = \{ t \in I_v : p_t = p \} . \]

\[\mathbf{p = 2} : \text{For each } t \in X_v, \text{ define the (nonempty) set} \]

\[L_t = \{ i \in \mathbb{Z} : B_{i,2}^{(t)} > 0 \}. \]
Similarly, we denote the smallest minimum distance over all VN types by

$$p = \min\{p_t : t \in I_v\}$$

and the set of VN types with this minimum distance by

$$X_v = \{t \in I_v : p_t = p\}.$$

- **p = 2**: For each $t \in X_v$, define the (nonempty) set
 $$L_t = \{i \in \mathbb{Z} : B_{i,2}^{(t)} > 0\}.$$

- **p = 2**: Define the polynomial $P(x)$ by
 $$P(x) = \sum_{t \in X_v} \lambda_t \sum_{i \in L_t} \frac{2B_{i,2}^{(t)}}{q_t} x^i.$$
Remarks

- Note that $P(x)$ depends on the VN representation (generator matrix)
Remarks

- Note that $P(x)$ depends on the VN *representation* (generator matrix).
- All coeffs of $P(x)$ positive $\implies P(x)$ monotonically increasing on $[0, \infty)$ \implies its inverse $P^{-1}(x)$ is well-defined and unique on $[0, \infty)$.

Case $r = p = 2$: both C and the polynomial $P(x)$ depend only on the CNs and VNs with minimum distance equal to 2.
Remarks

- Note that $P(x)$ depends on the VN representation (generator matrix).
- All coeffs of $P(x)$ positive $\implies P(x)$ monotonically increasing on $[0, \infty)$ \implies its inverse $P^{-1}(x)$ is well-defined and unique on $[0, \infty)$.
- **Case** $r = p = 2$: both C and the polynomial $P(x)$ depend only on the CNs and VNs with minimum distance equal to 2.
Growth Rate

Definition

The growth rate of the weight distribution of the irregular D-GLDPC ensemble sequence \(\{ \mathcal{M}_n \} \) is defined by

\[
G(\alpha) = \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E}_{\mathcal{M}_n} [N_{\alpha n}]
\]

Mark F. Flanagan Weight Distributions of D-GLDPC Codes
The growth rate of the weight distribution of the irregular D-GLDPC ensemble sequence \(\{ \mathcal{M}_n \} \) is defined by

\[
G(\alpha) = \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E}_{\mathcal{M}_n} [N_{\alpha n}]
\]

- \(\mathbb{E}_{\mathcal{M}_n} \) denotes the expectation operator over the ensemble \(\mathcal{M}_n \)
The growth rate of the weight distribution of the irregular D-GLDPC ensemble sequence \(\{ M_n \} \) is defined by

\[
G(\alpha) = \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E}_{M_n}[N_{\alpha n}]
\]

- \(\mathbb{E}_{M_n} \) denotes the expectation operator over the ensemble \(M_n \)
- \(N_w \) denotes the number of codewords of weight \(w \) of a randomly chosen D-GLDPC code in the ensemble \(M_n \)
The growth rate of the weight distribution of the irregular D-GLDPC ensemble sequence \(\{ \mathcal{M}_n \} \) is defined by

\[
G(\alpha) = \lim_{n \to \infty} \frac{1}{n} \log \mathbb{E}_{\mathcal{M}_n} [N_{\alpha n}]
\]

- \(\mathbb{E}_{\mathcal{M}_n} \) denotes the expectation operator over the ensemble \(\mathcal{M}_n \)
- \(N_w \) denotes the number of codewords of weight \(w \) of a randomly chosen D-GLDPC code in the ensemble \(\mathcal{M}_n \)
- The limit assumes the inclusion of only those positive integers \(n \) for which \(\alpha n \in \mathbb{Z} \) and \(\mathbb{E}_{\mathcal{M}_n} [N_{\alpha n}] \) is positive (i.e. where the expression whose limit we seek is well defined)
Case I: $\alpha \rightarrow 0 \ (r = p = 2)$

Theorem

Suppose $r = p = 2$. For sufficiently small α, the growth rate of the weight distribution is given by

$$G(\alpha) = \alpha \log \left[\frac{1}{P^{-1}(1/C)} \right] + O(\alpha^2).$$
The stability condition yields an upper bound on the iterative decoding threshold q^* of a code ensemble over the BEC.

The parameter $1 - \frac{1}{C} \left(\frac{1}{C} \right)$ is a direct generalization of the corresponding parameter for LDPC and GLDPC codes.
The stability condition yields an upper bound on the iterative decoding threshold q^* of a code ensemble over the BEC.

This bound was derived for irregular LDPC, GLDPC and D-GLDPC codes.
The *stability condition* yields an upper bound on the iterative decoding threshold \(q^* \) of a code ensemble over the BEC.

This bound was derived for irregular LDPC, GLDPC and D-GLDPC codes.

<table>
<thead>
<tr>
<th></th>
<th>Growth rate (G(\alpha))</th>
<th>Stability Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDPC</td>
<td>(\alpha \log [\lambda'(0)\rho'(1)] + O(\alpha^2))</td>
<td>(q^* \leq [\lambda'(0)\rho'(1)]^{-1})</td>
</tr>
<tr>
<td>GLDPC</td>
<td>(\alpha \log [\lambda'(0)C'] + O(\alpha^2))</td>
<td>(q^* \leq [\lambda'(0)C']^{-1})</td>
</tr>
<tr>
<td>D-GLDPC</td>
<td>(\alpha \log \left[\frac{1}{P^{-1}(1/C)} \right] + O(\alpha^2))</td>
<td>(q^* \leq P^{-1}(1/C))</td>
</tr>
</tbody>
</table>
The stability condition yields an upper bound on the iterative decoding threshold q^* of a code ensemble over the BEC.

This bound was derived for irregular LDPC, GLDPC and D-GLDPC codes.

<table>
<thead>
<tr>
<th></th>
<th>Growth rate $G(\alpha)$</th>
<th>Stability Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDPC</td>
<td>$\alpha \log [\lambda'(0)\rho'(1)] + O(\alpha^2)$</td>
<td>$q^* \leq [\lambda'(0)\rho'(1)]^{-1}$</td>
</tr>
<tr>
<td>GLDPC</td>
<td>$\alpha \log [\lambda'(0)C'] + O(\alpha^2)$</td>
<td>$q^* \leq [\lambda'(0)C']^{-1}$</td>
</tr>
<tr>
<td>D-GLDPC</td>
<td>$\alpha \log \left[\frac{1}{P^{-1}(1/C)}\right] + O(\alpha^2)$</td>
<td>$q^* \leq P^{-1}(1/C)$</td>
</tr>
</tbody>
</table>

The parameter $\frac{1}{P^{-1}(1/C)}$ is a direct generalization of the corresponding parameter for LDPC and GLDPC codes.
Case I: $\alpha \to 0$ (general)

Theorem

For sufficiently small α, the growth rate of the weight distribution is given by

$$G(\alpha) = \left(\frac{T}{\psi} \right) \alpha \log \alpha + \alpha \left[\log \left(\frac{1}{P_1^{-1}(1)} \right) + \frac{T}{\psi} \log \left(\frac{1}{P_2(P_1^{-1}(1))} \right) \right] + O(\alpha^2).$$

Here $\psi = r/(r-1)$, and $T \geq 0$ with equality if and only if $r = p = 2$. Also $P_1(x)$ and $P_2(x)$ are polynomials with positive coefficients.
Case I: $\alpha \to 0$ (general)

Theorem

For sufficiently small α, the growth rate of the weight distribution is given by

$$G(\alpha) = \left(\frac{T}{\psi} \right) \alpha \log \alpha + \alpha \left[\log \left(\frac{1}{P_1^{-1}(1)} \right) + \frac{T}{\psi} \log \left(\frac{1}{P_2(P_1^{-1}(1))} \right) \right] + O(\alpha^2).$$

- Here $\psi = r/(r - 1)$, and $T \geq 0$ with equality if and only if $r = p = 2$.

Mark F. Flanagan
Weight Distributions of D-GLDPC Codes
Case I: $\alpha \to 0$ (general)

Theorem

For sufficiently small α, the growth rate of the weight distribution is given by

$$G(\alpha) = \left(\frac{T}{\psi} \right) \alpha \log \alpha + \alpha \left[\log \left(\frac{1}{P_1^{-1}(1)} \right) \right.$$

$$+ \frac{T}{\psi} \log \left(\frac{1}{P_2(P_1^{-1}(1))} \right) \left. \right] + O(\alpha^2).$$

- Here $\psi = r/(r - 1)$, and $T \geq 0$ with equality if and only if $r = p = 2$.
- Also $P_1(x)$ and $P_2(x)$ are polynomials with positive coefficients.
Case II: arbitrary α

Let x_0, y_0, z_0 and β be the unique positive real solutions to the 4 \times 4 system of polynomial equations

\[
z_0 \left(\int \frac{\rho}{\lambda} \right) \sum_{s \in I_c} \gamma_s \frac{dA(s)}{dz}(z_0) = \beta,
\]

\[
x_0 \sum_{t \in I_v} \delta_t \frac{\partial B(t)}{\partial x}(x_0, y_0) = \alpha,
\]

\[
y_0 \sum_{t \in I_v} \delta_t \frac{\partial B(t)}{\partial y}(x_0, y_0) = \beta,
\]

and

\[
\left(\beta \int \lambda \right) (1 + y_0z_0) = y_0z_0.
\]
Case II: arbitrary α

Theorem

The growth rate of the weight distribution of the irregular D-GLDPC ensemble sequence $\{M_n\}$ is given by

$$G(\alpha) = \sum_{t \in I_v} \delta_t \log B^{(t)}(x_0, y_0) - \alpha \log x_0$$

$$+ \left(\frac{\int \rho}{\int \lambda} \right) \sum_{s \in I_c} \gamma_s \log A^{(s)}(z_0) + \log \left(\frac{1 - \beta \int \lambda}{\int \lambda} \right)$$
We have derived an expression for the asymptotic growth rate of irregular doubly-generalized LDPC code ensembles.
Conclusion

- We have derived an expression for the asymptotic growth rate of irregular doubly-generalized LDPC code ensembles
 - $\alpha \to 0$; compact analytical result
 - General α; polynomial system solution
We have derived an expression for the asymptotic growth rate of irregular doubly-generalized LDPC code ensembles

- $\alpha \to 0$; compact analytical result
- General α; polynomial system solution

This generalizes known results for LDPC and GLDPC codes
Conclusion

- We have derived an expression for the asymptotic growth rate of irregular doubly-generalized LDPC code ensembles
 - $\alpha \to 0$; compact analytical result
 - General α; polynomial system solution
- This generalizes known results for LDPC and GLDPC codes
- Identifies the parameter $\frac{1}{P-1}(1/C)$ as playing a key role in D-GLDPC code ensembles
- Extends the link between growth rate and stability condition over the BEC to the case of D-GLDPC codes
- Allows for exact numerical evaluation of the ensemble relative minimum distance.
Conclusion

- We have derived an expression for the asymptotic growth rate of irregular doubly-generalized LDPC code ensembles
 - $\alpha \to 0$; compact analytical result
 - General α; polynomial system solution
- This generalizes known results for LDPC and GLDPC codes
- Identifies the parameter $\frac{1}{P-1(1/C)}$ as playing a key role in D-GLDPC code ensembles
- Extends the link between growth rate and stability condition over the BEC to the case of D-GLDPC codes
Conclusion

- We have derived an expression for the asymptotic growth rate of irregular doubly-generalized LDPC code ensembles
 - $\alpha \to 0$; compact analytical result
 - General α; polynomial system solution

- This generalizes known results for LDPC and GLDPC codes

- Identifies the parameter $\frac{1}{P-1}(1/C)$ as playing a key role in D-GLDPC code ensembles

- Extends the link between growth rate and stability condition over the BEC to the case of D-GLDPC codes

- Allows for exact numerical evaluation of the ensemble relative minimum distance.